Answer:
mnfokfnfi3or
Explanation:
can you translate it into english.....
Answer / Explanation:
Eavesdropping attack is also sometimes refereed to as sniffing attack. It is simply the process by which an attacker or hacker tries to penetrate very suddenly into an unaware individuals network or server with the intention to steal information transmitted over the network or server through that computer.
To prevent such attack, there are several mean which include installing network monitoring software to check who else is connected to the network but the most common method of preventing such attack is to encrypt the Hypertext Transfer Protocol (http) and the way to do this is by securing it with a sort of security key.
On installing the security key, the network becomes encrypted and secured such that whatever network transmitted over the network becomes encrypted and unable to read. The protocol then converts to (https).
Answer:
F(x) = 0 ; x < 0
0.064 ; 0 ≤ x < 1
0.352 ; 1 ≤ x < 2
0.784 ; 2 ≤ x < 3
1 ; x ≥ 3
Explanation:
Each wafer is classified as pass or fail.
The wafers are independent.
Then, we can modelate X : ''Number of wafers that pass the test'' as a Binomial random variable.
X ~ Bi(n,p)
Where n = 3 and p = 0.6 is the success probability
The probatility function is given by :

Where
is the combinatorial number

Let's calculate f(x) :




For the cumulative distribution function that we are looking for :



The cumulative distribution function for X is :
F(x) = 0 ; x < 0
0.064 ; 0 ≤ x < 1
0.352 ; 1 ≤ x < 2
0.784 ; 2 ≤ x < 3
1 ; x ≥ 3
Answer:
A) ν = 0.292
B) ν = 0.381
Explanation:
Poisson's ratio = - (Strain in the direction of the load)/(strain in the direction at right angle to the load)
In axial tension, the direction of the load is in the length's direction and the direction at right angle to the load is the side length
Strain = change in length/original length = (Δy)/y or (Δx)/x or (ΔL/L)
A) Strain in the direction of the load = (2.49946 - 2.5)/2.5 = - 0.000216
Strain in the direction at right angle to the load = (7.20532 - 7.2)/7.2 = 0.0007389
Poisson's ratio = - (-0.000216)/(0.0007389) = 0.292
B) Strain in the direction of the load = (2.09929 - 2.1)/2.1 = - 0.0003381
Strain in the direction at right angle to the load = (5.30470 - 5.3)/5.3 = 0.0008868
Poisson's ratio = - (-0.0003381)/(0.0008868) = 0.381