Answer:
12.84 mg/L
Explanation:
We are given;
Volume of lake; V = 1.1 x 10^(6) m³
decay coefficient; K = 0.10/day = 0.1/(24 × 60 × 60) /s = 0.00000115741 /s
Factory rate: Q_f = 4.3 m³/s
Factory concentration: C_f = 100 mg/L
Stream rate: Q_s = 34 m³/s
Stream Concentration: C_s = 2.3 mg/L
Now, to find the steady state concentration of pollutant in the lake, we will use the formula;
(Q_s•C_s) + (Q_f•C_f) = (Q_f + Q_s)C_L + (KV•C_L)
Where C_L is the steady state concentration of pollutant in the lake.
Thus, making C_L the subject, we have;
C_L = [(Q_s•C_s) + (Q_f•C_f)]/(Q_f + Q_s + K•V)
Plugging in the relevant values gives;
C_L = ((34 × 2.3) + (4.3 × 100))/(4.3 + 34 + (0.00000115741 × 1.1 × 10^(6)))
C_L = 12.84 mg/L
Answer:
Composite panel garage doors
Explanation:
Answer:

Explanation:
Previous concepts
Angular momentum. If we consider a particle of mass m, with velocity v, moving under the influence of a force F. The angular momentum about point O is defined as the “moment” of the particle’s linear momentum, L, about O. And the correct formula is:

Applying Newton’s second law to the right hand side of the above equation, we have that r ×ma = r ×F =
MO, where MO is the moment of the force F about point O. The equation expressing the rate of change of angular momentum is this one:
MO = H˙ O
Principle of Angular Impulse and Momentum
The equation MO = H˙ O gives us the instantaneous relation between the moment and the time rate of change of angular momentum. Imagine now that the force considered acts on a particle between time t1 and time t2. The equation MO = H˙ O can then be integrated in time to obtain this:

Solution to the problem
For this case we can use the principle of angular impulse and momentum that states "The mass moment of inertia of a gear about its mass center is
".
If we analyze the staritning point we see that the initial velocity can be founded like this:

And if we look the figure attached we can use the point A as a reference to calculate the angular impulse and momentum equation, like this:

](https://tex.z-dn.net/?f=0%2B%5Csum%20%5Cint_%7B0%7D%5E%7B4%7D%2020t%20%280.15m%29%20dt%20%3D0.46875%20%5Comega%20%2B%2030kg%5B%5Comega%280.15m%29%5D%280.15m%29)
And if we integrate the left part and we simplify the right part we have

And if we solve for
we got:

Answer:
a)Are generally associated with factor.
Explanation:
We know that losses are two types
1.Major loss :Due to friction of pipe surface
2.Minor loss :Due to change in the direction of flow
As we know that when any hindrance is produced during the flow of fluid then it leads to generate the energy losses.If flow is along uniform diameter pipe then there will not be any loss but if any valve and fitting placed is the path of fluid flow due to this direction of fluid flow changes and it produce losses in the energy.
Lot' of experimental data tell us that loss in the energy due to valve and fitting are generally associated with K factor.These losses are given as

Answer:
a cable -stayed bridge has, one or more towers,from which cable support the bridge deck.