Answer:
Explanation:
thickness of oil t = 200 nm
index of refraction μ = 1.5
For transmitted light :---
path difference = 2μ t
For constructive interference
path difference = n λ , λ is wavelength of light
2μ t = n λ
λ = 2μ t / n
For longest λ , n = 1
λ = 2μ t
= 2 x 1.5 x 200 nm
= 600 nm
Wavelength in water
= 600 / refractive index of water
= 600 / 1.33
= 451.1 nm Ans
Explanation:
Given:
m = 1.673 × 10^-27 kg
Q = q = 1.602 × 10^-19 C
r = 0.75 nm
= 0.75 × 10^-9 m
A.
Energy, U = (kQq)/r
Ut = 1/2 mv^2 + 1/2 mv^2
1.673 × 10^-27 × v^2 = (8.99 × 10^9 × (1.602 × 10^-19)^2)/0.75 × 10^-9
v = 1.356 × 10^4 m/s
B.
F = (kQq)/r^2
F = m × a
1.673 × 10^-27 × a = ((8.99 × 10^9 × (1.602 × 10-19)^2)/(0.075 × 10^-9)^2
a = 2.45 × 10^17 m/s^2.
The amount of heat needed to raise the temperature of a substance by

is given by

where
m is the mass of the substance
Cs is its specific heat capacity

is the increase in temperature
For oxygen, the specific heat capacity is approximately

The variation of temperature for the sample in our problem is

while the mass is m=150 g, so the amount of heat needed is
The law of conservation of momentum tells us that momentum
is conserved, therefore total initial momentum should be equal to total final
momentum. In this case, we can expressed this mathematically as:
mA vA + mB vB = m v
where, m is the mass in kg, v is the velocity in m/s
since m is the total mass, m = mA + mB, we can write the
equation as:
mA vA + mB vB = (mA + mB) v
furthermore, car B was at a stop signal therefore vB = 0,
hence
mA vA + 0 = (mA + mB) v
1800 (vA) = (1800 + 1500) (7.1 m/s)
<span>vA = 13.02 m/s</span>
When the substance are moved close together and they move more quickly they get compressed.