As the ball is moving in air as well as we have to neglect the friction force on it
So we can say that ball is having only one force on it that is gravitational force
So the force on the ball must have to be represented by gravitational force and that must be vertically downwards
So the correct FBD will contain only one force and that force must be vertically downwards
So here correct answer must be
<em>Diagram A shows a box with a downward arrow. </em>
Some guidance notes which may help.To calculate the current flow, Ohm's law can be used. This can be written as current=voltage/resistance, or I=V/R. V is 1.5V.R for the copper wire quoted would be calculated as R = resistivity x length/cross sectional area. The area would be calculated from the formula area = pi x diameter squared/4So, R=resistivity x length divided by (pi x diameter squared/4)Until is the resistivity of copper is known, that's about as far as can be gone.Any further questions, please ask.
Answer:
B. 6
Explanation:
i think... im in 7th grade and haven't really leaned this but im like 60% sure but i migjt be wrong
As we know that here no air resistance while ball is moving in air
So here we will say that
initial total energy = final total energy

here we know that
(as it will be on ground at initial and final position)
so we will say

since mass is always conserved
so we will say that final speed of the ball must be equal to the initial speed of the ball
so we have
