Statement :- We assume the orthagonal sequence
in Hilbert space, now
, the Fourier coefficients are given by:

Then Bessel's inequality give us:

Proof :- We assume the following equation is true

So that,
is projection of
onto the surface by the first
of the
. For any event, 
Now, by Pythagoras theorem:


Now, we can deduce that from the above equation that;

For
, we have

Hence, Proved
Answer:
Its momentum thats linear
Explanation:
from my secret analysis i would say this is really linear
Answer: 6067.5 N
Explanation:
Work = Change in Energy. To start, all of the energy is kinetic energy, so find the total KE using: KE = 1/2(m)(v^2). Plug in 1980 kg for m and 15.5 m/s for v and get KE = 237847.5 J.
Now, plug this in for work: Work = Force * Distance; so, divide work by distance to get 6067.5 N.
The only answer that can justify being a hypothesis is C.