Answer:
1) 950 mL
2) 625 mmHg
3) 426 mL
Explanation:
1) This is the relationship between pressure and volume. This relationship looks like this:
P1*V1 = P2*V2
This means the first pressure times the initial volume is equal to the second pressure times the second volume. We are solving for the second volume. First, convert the mmHg to atm and the mL to L.
1 L * 1 atm = 1.053 atm * X
X = 0.95 L or 950 mL
2) This is the same concept as the last one. :) We don't have to convert the mmHg to atm since the answer wants it in mmHg.
750 mmHg * 0.25 L = 0.3 L * X
X = 625 mmHg
3) The relationship between volume and temperature is similar to the one between pressure and temperature (like the problem in your last question). Remember to convert degrees C to Kelvin and mL to L.
V1 / T1 = V2 / T2
0.4 L / 303 K = X / 323 K
X = 0.426 L pr 426 mL
These problems become much easier once you learn the relationships between the different variables (temp, pressure, volume, etc.) When you have a problem like this, I like to first determine what relationship I am dealing with and then write out what I have and what I am solving for. This helps with organizing the problem. Then just solve it like a normal algebra problem. Always remember to convert temp to Kelvin, mL to L, and pressure to atm (unless it wants it in a different unit, then just make sure all the units match).
Good luck with you studies! :)
Answer:
la verdad no se no ablo ingles solo espanis
Answer:
a) Step 1:

Step 2:

b) The overall balanced reaction for given process is ;

Explanation:
a)
Galena = 
Lead(II) oxide = 
Sulfur dioxide = 
Step 1:
Roasting the galena in oxygen gas to form lead(II) oxide and sulfur dioxide.
Balanced equation of step 1:
..[1]
Step 2:
Heating the metal oxide with more galena forms the molten metal and more sulfur dioxide.
Balanced equation of step 2:
..[2]
b)
For over all reaction add [1] and [2]. The overall balanced reaction for given process is ;

They combine with oxygen atoms, I think.