<u>Answer:</u>
Those cells that develop differently are referred to Specialised Cells.
<u>
</u><u>Explanation:</u>
Specialised cells are the one that is assigned to perform a specific role. Every specialised cell in the body is assigned to do their own job. The special features in them help them to perform their functions effectively.
Examples of specialised cells are- red blood cells (they are responsible to carry oxygen in the body), nerve cells (specialises in transmitting electrical signals) and muscle cells (brings body parts together).
DescriptionThe dhalang or dalang is the puppeteer in an Indonesian wayang performance. In a performance of wayang kulit, the dalang sits behind a screen made of white cotton stretched on a wooden frame. Above his head, hanging from beams attached to the top of the screen, is the lamp, which projects the shadows onto the screen
Answer:
kinetic energy is energy possessed due to its motion while potential energy is energy possessed by a body by virtue of its position relative to others
To determine the number of moles of carbon dioxide that is produced, we need to know the reaction of the process. For the reaction of HCl and sodium carbonate, the balanced chemical equation would be expressed as:
2HCl + Na2CO3 = 2NaCl + H2O + CO2
From the initial amount given of sodium carbonate and the relation of the substances from the balanced reaction, we calculate the moles of carbon dioxide as follows:
0.2 moles Na2Co3 ( 1 mol CO2 / 1 mol Na2Co3 ) = 0.2 moles CO2
Therefore, the amount in moles of carbon dioxide that is produced from 0.2 moles sodium carbonate would be 0.2 moles as well.
Answer:
- 0.99 °C ≅ - 1.0 °C.
Explanation:
- We can solve this problem using the relation:
<em>ΔTf = (Kf)(m),</em>
where, ΔTf is the depression in the freezing point.
Kf is the molal freezing point depression constant of water = -1.86 °C/m,
m is the molality of the solution (m = moles of solute / kg of solvent = (23.5 g / 180.156 g/mol)/(0.245 kg) = 0.53 m.
<em>∴ ΔTf = (Kf)(m)</em> = (-1.86 °C/m)(0.53 m) =<em> - 0.99 °C ≅ - 1.0 °C.</em>