1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
disa [49]
3 years ago
13

What are the only elements that exist in nature as uncombined

Chemistry
1 answer:
mario62 [17]3 years ago
5 0

Answer:

The noble gases (Argon, Neon, Xenon, Helium, Krypton, Radon)

You might be interested in
How many molecules of XeF6 are formed from 12.9 L of F2 (at 298 K and 2.6 atm) according to 11) the following reaction? Assume t
ddd [48]

Answer:

#Molecules XeF₆ = 2.75 x 10²³ molecules XeF₆.

Explanation:

Given … Excess Xe + 12.9L F₂ @298K & 2.6Atm => ? molecules XeF₆

1. Convert 12.9L 298K & 2.6Atm to STP conditions so 22.4L/mole can be used to determine moles of F₂ used.

=> V(F₂ @ STP) = 12.6L(273K/298K)(2.6Atm/1.0Atm) = 30.7L F₂ @ STP

2. Calculate moles of F₂ used

=> moles F₂ = 30.7L/22.4L/mole = 1.372 mole F₂ used

3. Calculate moles of XeF₆ produced from reaction ratios …

Xe + 3F₂ => XeF₆ => moles of XeF₆ = ⅓(moles F₂) = ⅓(1.372) moles XeF₆ = 0.4572 mole XeF₆

4. Calculate number molecules XeF₆ by multiplying by Avogadro’s Number  (6.02 x 10²³ molecules/mole)

=> #Molecules XeF₆ = 0.4572mole(6.02 x 10²³ molecules/mole)

                                  = 2.75 x 10²³ molecules XeF₆.

8 0
3 years ago
Help me, it’s pretty easy science moon stuff !
trasher [3.6K]
Hello :)
Based on the information I received reading the picture, the answer should be “B”

Explanation: if I am wrong I’m very sorry. But that should be the answer
8 0
3 years ago
Read 2 more answers
One mole of a monatomic ideal gas is subjected to the following sequence of steps: a. Starting at 300 K and 10 atm, the gas expa
Verdich [7]

Answer:

a) Q = 0; W = 0; ΔU = 0; ΔH = 0; ΔS = 0.09 atm.L/K

b) Q = 1250 J; W = 0; ΔU = 1250 J; ΔH = 1250 J; ΔS = -0.0235 atm.L/K

c) Q = 3653.545 J; W = - 3653.545 J; ΔU = 0; ΔH = 0; ΔS = - 3653.545 J

d) Q = - 2080 J; W = 830 J; ΔU = - 1250 J; ΔH = - 2080 J; ΔS = - 5.984 J/K

Explanation:

a) If there is a vacuum, the work is zero, as it is a free expansion, the volume increases, the pressure decreases, the temperature is constant and the internal energy is constant.

∴ n = 1 mole

∴ PV = RTn....ideal gas

∴ P1 = 10 atm

∴ R = 0.082 atm.L/K.mol

∴ T = 300 K = T2

∴ V2 = 3*V1

⇒ W = 0.....expands freely into vacuum

⇒ ΔU = Q = 0....first law

⇒ ΔS = -  nR Ln(P2/P1).....ideal gas

∴ V1*P1/T1 = V2*P2/T2

∴ T1 = T2 = 300 K

⇒ P2 = V1*P1 / V2 = V1*P1 / 3V1 = 10 atm/3 = 3.33 atm

⇒ ΔS = - (1mol)*(0.082 atm.L/K.mol) Ln ( 3.33/10)

⇒ ΔS = 0.09 atm.L/K

∴ ΔH = ΔU + (P2V2 - P1V1) = 0 + 0 = 0

b) heated reversibly at constant volume:

⇒ W = 0 ...at constant volume

∴ T2 = 400 K; T1 = 300 K

∴ V1 = V2

⇒ Q = ΔU = CvΔT....first law

∴ Cv = 12.5 J/K.mol.....monoatomic ideal gas

∴ ΔT = 400 - 300 = 100 K

⇒ Q = ΔU = 12.5 J/mol.K * 100K = 1250 J/mol * 1 mol = 1250 J

∴ ΔH = ΔU + PΔV = ΔU + 0 = 1250 J

∴ ΔS = - nR Ln (P2/P1)

∴ P2/T2 = P1/T1...constant volume

∴ P1 = 3.33 atm

⇒ P2 = P1*T2 / T1 = (3.33 atm)*(400K) / (300K) = 4.44 atm

⇒ ΔS = - (1mol)*(0.082atm.L/K.mol) Ln (4.44/3.33)

⇒ ΔS = - 0.0235 atm.L/K

c) reversibly expanded at constant temperature:

∴ T1 = T2 = 400K

∴ V2 = 3*V1

∴ ΔU = 0...constant temperature

⇒ Q = - W....fisrt law

∴ W = - ∫ PdV..... reversibly expansion

∴ P = nRT/V... ideal gas

⇒ W = - nRT ∫ dV/V

⇒ W = - nRT Ln (V2/V1)

⇒ W = - (1mol)*(8.314 J/K.mol) Ln (3)

⇒ W = - 9.134 J/K *400K = - 3653.545 J

⇒ Q = - W = 3653.545 J

⇒ ΔH = ΔU + P1V1 - P2V2 = 0 + nRT1 - nRT2 = 0 + 0 = 0

∴ ΔS = - nR Ln(P2/P1)

∴ P1 = 4.44 atm

⇒ P2 = V1*P1*T2/ V2*T1 = V1*(4.44atm)*(400K) / (3.V1)*(400K)

⇒ P2 = 4.44atm/3 = 1.48 atm

⇒ ΔS = - (1mol)*(8.314 J/mol.K) Ln (1.48/4.44)

⇒ ΔS = -9.134J/K * 400K = - 3653.545 J

d) reversibly cooled at constant pressure:

∴ T2 = 300 K;  T1 = 400 K

∴ P2 = P1

⇒ Q = ΔH = CpΔT

∴ Cp = 20.8 J/K.mol

∴ ΔT = 300 - 400 = - 100 K

⇒ Q = ΔH = 20.8 J/mol.K * ( -100K) = - 2080 J/mol * 1mol = - 2080 J

⇒ ΔU = nCvΔT = (1mol)*(12.5 J/mol.K)*( - 100K) = -1250 J

⇒ W = ΔU - Q = ΔU - ΔH = -1250 J - ( - 2080 J ) = 830 J

∴ ΔS = ∫ δQ/T = ∫ nCpdT/T

⇒ ΔS = nCp Ln (T2/T1)

⇒ ΔS = (1mol)*(20.8 J/mol.K) Ln (300/400) = - 5.984 J/K

7 0
3 years ago
Calculate the mass (in g) of 2.1 x 1024 atoms of W.
Monica [59]
Atomic mass W = 183.84 u.m.a

183.84 g ----------- 6.02x10²⁴ atoms
?? g ---------------- 2.1x10²⁴ atoms

2.1x10²⁴ x 183.84 / 6.02x10²⁴ =

3.860x10²⁶ / 6.02x10²⁴ = 641.30 g

hope this helps!
4 0
3 years ago
Which of the following is not considered an aspect of environmental health?
notka56 [123]
The one that isn't considered an aspect of environmental health such as smog<span />
6 0
3 years ago
Other questions:
  • Which has the largest atomic radius calcium bromide barium and astatine
    12·2 answers
  • In calculating the equilibrium constant for a reaction, the coefficients of the chemical equation are used as exponents for the
    15·1 answer
  • What symbolizes the flow of energy in a diagram of a food chain?
    5·2 answers
  • 1. Which of the following qualifies as a Bronsted-Lowry base but not an Arrhenius base?
    13·2 answers
  • Please help me with this or I may get an F in chemistry :(
    13·1 answer
  • Q#5. The bond between which two atoms is most polar? ​
    12·1 answer
  • Which molecules would most likely cause a liquid to have the lowest viscosity?
    14·1 answer
  • An element with 4 valence electrons in the 3rd period of the periodic table
    11·1 answer
  • (pls help me)
    13·2 answers
  • What does the author predict about the future of the Earth's mantle? Do you support his educated guess? Use complete sentences t
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!