Answer: <span>Arachidonic Acid and PGE</span>₁<span> are both carboxylic acids with
<u>Twenty Carbon</u> atoms. The differences are that Arachidonic acid contains
<u>Four <em>cis</em> Double Bonds</u> and no other functional groups, whereas PGE</span>₁<span> has
<u>One <em>Trans</em> Double Bond, Two Hydroxyl and One Ketone Functional Groups.</u>. In addition, a part of the PGE</span>₁<span> chain forms a
<u>Five Membered Ring</u>.
Structures of Both Arachidonic Acid and PGE</span>₁ are shown Below,
Answer:
0.712 mol
Explanation:
The easiest way to do this is to use a proportion.
1 mol of copper = 63.5 grams (check this using your periodic table).
x mol of copper = 45.2 grams
1/x = 63.5 / 45.2 Cross multiply
63.5 x = 1 * 45.2 Divide by 63.5
x = 45.2/63.5
x = 0.712 mol Answer to 3 sig digs
Answer:
The answer is B. Limiting factors can lower birth rates, increase death rates.
Answer:
The pressure inside the container will be 3.3 atmospheres
Explanation:
The relationship between the temperature and pressure of a gas occupying a fixed volume is given by Gay-Lussac's law which states that the pressure of a given amount of gas is directly proportional to its temperature on the kelvin scale when the volume is kept constant.
Mathematically, it expressed as: P₁/T₁ = P₂/T₂
where P₁ is initial pressure, T₁ is initial temperature, P₂ is final pressure, T₂ is final temperature.
The above expression shows that the ratio of the pressure and temperature is always constant.
In the given question, the gas in the can attains the temperature of its environment.
P₁ = 3 atm,
T₁ = 25 °C = (273.15 + 25) K = 298.15 K,
P₂ = ?
T₂ = (55 °C = 273.15 + 55) K = 328.15 K
Substituting the values in the equation
3/298.15 = P₂/328.15
P₂ = 3 × 328.15/298.15
P₂ = 3.3 atm
Therefore, the pressure inside the container will be 3.3 atmospheres