To determine the number of phosphorus atoms from a given mass, we need to determine the number of moles of the substance by dividing the molar mass which for in this case is equal to 123.88 g/mol for P4. Then, we multiply Avogadro's number. It <span>represents the number of
units in one mole of any substance. This has the value of 6.022 x 10^23 units /
mole.
mole P4 = 158 kg P4 ( 1000 g / 1 kg ) ( 1 mol / 123.88 g ) = 1275.43 mol P4
# of P4 atoms = 1275.43 mol P4 ( 6.022 x 10^23 atoms P4 / 1 mol P4 ) = 7.68x10^26 atoms P4</span>
Answer:
The pressure of N₂ gas in cylinder B when compressed at constant temperature increases due to the increase in the frequency of collision between the gas molecules with themselves and with the wall of their container caused by a decrease in volume of the container.
Explanation:
Gas helps to explain the behavior of gases when one or more of either temperature, volume or pressure is varying while the other variables are kept constant.
In the gas cylinder B, the temperature of the given mass of gas is kept constant, however, the volume is decreased by pushing the movable piston farther into the cylinder. According to the gas law by Robert Boyle, the volume of a given mass of gas is inversely proportional to its pressure at constant temperature. This increase in pressure is due to the increase in the frequency of collision between the gas molecules with themselves and with the wall of their container caused by a decrease in volume of the container. As the cylinder becomes smaller, the gas molecules which were spread out further become more packed closely together, therefore, their frequency of collision increases building up pressure in the process.
The pH value can be measured using electrochemical measuring systems, litmus paper, or indicators and colorimeters. The easiest way to take a pH measurement is to use litmus paper or a colorimeter. The advantage of this type of pH measurement is that the pH range is well known and they are easy to apply.
Answer:
The structures are shown in the figure.
Explanation:
The primary hydrogens are those which are attached to primary carbon.
Primary carbons are the carbons which are attached to only one carbon.
Primary carbons is bonded to three hydrogens.
In order to draw such structure we will draw structures which will have carbon with three hydrogens or no hydrogens (quaternary)
The structures are shown in the figure with clear marking.
According to the reversible reaction equation:
2Hi(g) ↔ H2(g) + i2(g)
and when Keq is the concentration of the products / the concentration of the reactants.
Keq = [H2][i2]/[Hi]^2
when we have Keq = 1.67 x 10^-2
[H2] = 2.44 x 10^-3
[i2] = 7.18 x 10^-5
so, by substitution:
1.67 x 10^-2 = (2.44 x 10^-3)*(7.18x10^-5)/[Hi]^2
∴[Hi] = 0.0033 M