Answer:
1. Dheere Dheere (slowly slowly)
2. Har (every)
3. Kal (tomorrow)
4. Mat (don't)
5. Andar (inside)
sorry I wasn't able to write in hindi
Answer:
448 meters
Explanation:
every second it moves 8 meters, so all you have to do is multiply 56x8 or 8x56 either way it is the same thing and you will get the same answer
××

×
50N is your force and the acceleration is -9.8m/s^2 due to gravity.
So, you just plug that in.

BUT you know that mass cannot be negative, so you just disregard the negative sign and the mass of the rock is 5.102 grams.
- Mass=1167kg
- Initial velocity=u=10m/s
- Acceleration=a=4m/s^2
- Work done=105J=W
- Final velocity=v=?
- Force=F
- Distance=d
Apply Newton's second law


Now




Now
According to third equation of kinematics






Answer:
The horizontal force is 106.89 N.
Explanation:
Given that,
Work done = 310 J
Distance = 2.9 m
We need to calculate the horizontal force
Using formula of work done

Where, 

Put the value into the formula



Hence, The horizontal force is 106.89 N.