1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anvisha [2.4K]
3 years ago
15

A photon of wavelength 7.33 pm scatters at an angle of 157° from an initially stationary, unbound electron. What is the de Brogl

ie wavelength of the electron after the photon has been scattered?
Physics
1 answer:
Ann [662]3 years ago
8 0

Answer:

4.63 p.m.

Explanation:

The problem given here can be solved by the Compton effect which is expressed as

\lambda^{'}-\lambda=\frac{h}{m_e c}(1-cos\theta)

here, \lambda  is the initial photon wavelength, \lambda^{'} is the scattered photon wavelength, h is he Planck's constant, m_e is the free electron mass, c is the velocity of light, \theta  is the angle of scattering.

Given that, the scattering angle is, \theta=157^{\circ}

Putting the respective values, we get

\lambda^{'}-\lambda=\frac{6.626\times 10^{-34} }{9.11\times 10^{-31}\times 3\times 10^{8}  } (1-cos157^\circ ) m\\\lambda^{'}-\lambda=2.42\times 10^{-12} (1-cos157^\circ ) m\\\lambda^{'}-\lambda=2.42(1-cos157^\circ ) p.m.

Therfore,

\lambda^{'}-\lambda=4.64 p.m.

Here, the photon's incident wavelength is \lamda=7.33pm

So,

\lambda^{'}=7.33+4.64=11.97 p.m

From the conservation of momentum,

\vec{P_\lambda}=\vec{P_{\lambda^{'}}}+\vec{P_e}

here, \vec{P_\lambda} is the initial photon momentum, \vec{P_{\lambda^{'}}} is the final photon momentum and \vec{P_e} is the scattered electron momentum.

Expanding the vector sum, we get

P^2_{e}=P^2_{\lambda}+P^2_{\lambda^{'}}-2P_\lambda P_{\lambda^{'}}cos\theta

Now expressing the momentum in terms of De-Broglie wavelength

P=h/\lambda and putting it in the above equation we get,

\lambda_{e}=\frac{\lambda \lambda^{'}}{\sqrt{\lambda^{2}+\lambda^{2}_{'}-2\lambda \lambda^{'} cos\theta}}

Therfore,

\lambda_{e}=\frac{7.33\times 11.97}{\sqrt{7.33^{2}+11.97^{2}-2\times 7.33\times 11.97\times cos157^\circ }} p.m.\\\lambda_{e}=\frac{87.7401}{18.935} = 4.63 p.m.

This is the de Broglie wavelength of the electron after scattering.

You might be interested in
A material's ability to allow heat or electricity to flow through it...
NikAS [45]

Answer:

a

Explanation:

how well a material shines or reflects light

8 0
3 years ago
Jenny and Betty are having a great time at Busch Gardens riding the Ubanga Banga bumper cars. Jenny, who is traveling southward
Alex777 [14]

Jenny is traveling southward.  In order to stop, she needs a northward acceleration.


A better way to say it:

Jenny is traveling southward in her bumper car, so the direction of her velocity is south.  In order to reduce her velocity to zero, a velocity of equal magnitude but directed north must be added to it.  Then the change in velocity is positive northward, and the change in velocity per unit time is acceleration.

6 0
3 years ago
Read 2 more answers
I need help with...
Rom4ik [11]
The car will gain new momentum if it's velocity is doubled or tripled.
6 0
3 years ago
A 2.0-cm-diameter parallel-plate capacitor with a spacing of 0.50 mm is charged to 200 V?What is the total energy stores in the
Rama09 [41]

1) 1.11\cdot 10^{-7} J

The capacitance of a parallel-plate capacitor is given by:

C=\frac{\epsilon_0 A}{d}

where

\epsilon_0 is the vacuum permittivity

A is the area of each plate

d is the distance between the plates

Here, the radius of each plate is

r=\frac{2.0 cm}{2}=1.0 cm=0.01 m

so the area is

A=\pi r^2 = \pi (0.01 m)^2=3.14\cdot 10^{-4} m^2

While the separation between the plates is

d=0.50 mm=5\cdot 10^{-4} m

So the capacitance is

C=\frac{(8.85\cdot 10^{-12} F/m)(3.14\cdot 10^{-4} m^2)}{5\cdot 10^{-4} m}=5.56\cdot 10^{-12} F

And now we can find the energy stored,which is given by:

U=\frac{1}{2}CV^2=\frac{1}{2}(5.56\cdot 10^{-12} F/m)(200 V)^2=1.11\cdot 10^{-7} J

2) 0.71 J/m^3

The magnitude of the electric field is given by

E=\frac{V}{d}=\frac{200 V}{5\cdot 10^{-4} m}=4\cdot 10^5 V/m

and the energy density of the electric field is given by

u=\frac{1}{2}\epsilon_0 E^2

and using

E=4\cdot 10^5 V/m, we find

u=\frac{1}{2}(8.85\cdot 10^{-12} F/m)(4\cdot 10^5 V/m)^2=0.71 J/m^3

7 0
3 years ago
A voltmeter was used to check the coolant and a reading of 0.2 volt with the engine off was measured. A reading of 0.8 volt was
Julli [10]

Answer:

C. Technician B

Explanation:

Excessive Galvanic activity:

To check for excessive galvanic activity, voltmeter is used to check the coolant. If the voltmeter is giving a reading greater than 0.5 V, there is excessive galvanic activity. Excessive galvanic activity is solved by flushing the coolant fluid from engine and refiling it.

Electrolysis problem:

When the system is not properly ground, the cooling system accepts stray current and the coolant becomes an electrolyte which might eat up the radiator. To test for excessive electrolysis, start the engine and turn on all electrical accessories, if the reading is more than 0.5 V, there is electrolysis problem. Ground wires and connections should be checked at this point to stop stray current.

In our case, the first reading is 0.2 V(engine turned off) which is normal and there is no excessive galvanic activity. This means that Technician A is not correct. The second reading is 0.8 V when the engine and all electrical accessories are turned on. This reading is greater than 0.5 V which means there is an electrolysis problem. This means that Technician B is correct and ground wires and connections should be inspected and repaired.

7 0
3 years ago
Other questions:
  • A wave with a short wave length will also have...?
    15·1 answer
  • You’re an electrical engineer designing an alternator (the generator that charges a car’s battery). Mechanical engineers specify
    8·1 answer
  • Answer:<br><br> A. 2y(x³ + 9x - 5x² - 45)<br><br> B. 2y(x² + 9)(x - 5)
    6·1 answer
  • (28 points) In a little over 5 billion years, our star will slough off ~20% of its mass and collapse to a white dwarf star of ra
    13·1 answer
  • A river has a steady speed of 0.480 m/s. a student swims upstream a distance of 1.00 km and swims back to the starting point. (a
    13·1 answer
  • A resistor R and a capacitor C are connected in series to a battery of terminal voltage V0. Which of the following equations rel
    7·1 answer
  • Calculate the heat added to 3kg of water if the temperature increases from 30 C to 60 C.
    15·1 answer
  • Discuss the pros and cons of one of the examples of variations in family life – cohabitation, single-parent households, same-sex
    8·1 answer
  • Please help! i will give brainliest :)
    6·1 answer
  • Why do we "call it a day" when it's the end of the day/ night time?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!