The balanced nuclear equations for the following:(a) β⁻ decay of silicon-32 is (27,14)Si -> (0,-1)beta + (27,15)P
<h3>
What is balanced nuclear equation?</h3>
A nuclear reaction is generally expressed by a nuclear equation, which has the general form, where T is the target nucleus, B is the bombarding particle, R is the residual product nucleus, and E is the ejected particle, and Ai and Zi (where I = 1, 2, 3, 4) are the mass number and atomic number, respectively. Finding a well balanced equation is critical for understanding nuclear reactions. Balanced nuclear equations provide excellent information about the energy released in nuclear reactions. Balancing the nuclear equation requires equating the total atomic number as well as the total mass number before and after the reaction using the rules of atomic number and mass number conservation in a nuclear reaction.
To learn more about nuclear equations visit:
brainly.com/question/12221598
#SPJ4
Electrons hold a negative charge, and anion refers to a negatively charged atom.
The answer is anion. Here's a way to help remember:
Cats have paws, and cations are "paws"itive (positive).
Answer:
= 25.05°C
Explanation:
Given:
the value of ΔHcomb (heat of combustion) for dimethylphthalate (C10H10O4) is = 4685 kJ/mol.
mass = 0.905g of dimethylphthalate
molar mass = 194.18g dimethylphthalate
number of moles of dimethylphthalate = ???
= 21.5°C
= 6.15 kJ/°C
= ???
since we have our molar mass and mass of dimethylphthalate ;we can determine the number of moles as;
0.905g of dimethylphthalate ×
number of moles of dimethylphthalate = 0.000466 moles
Heat released = moles of dimethylphthalate × heat of combustion
= 0.000466 moles × 4685 kJ
= 21.84 kJ
∴ Heat absorbed by the calorimeter =
21.84 kJ =6.15 kJ/°C
21.84 KJ =
21.84 KJ = - 132.225 kJ
21.84 KJ + 132.225 kJ =
154.065 kJ =
=
=25.05°C
Answer:
The answer is: 11759 Hz
Explanation:
Given: Chemical shift: δ = 211.5 ppm, Spectrometer frequency = 556 MHz = 556 × 10⁶ Hz
In NMR spectroscopy, the chemical shift (δ), expressed in ppm, of a given nucleus is given by the equation:
<u>Therefore, the signal is at 11759 Hz from the TMS.</u>