Answer:
ok follow me twitter dm me for answer The Kid D is my twitter
Explanation:
Conjugate base of Propanoic acid (
is propanoate where -COOH group gets converted to -CO
. The structure of conjugate base of Propanoic acid is shown in the diagram.
The
above which 90% of the compound will be in this conjugate base form can be determined using Henderson's equation as propanoic acid is weak acid and it can form buffer solution on reaction with strong base.
=
+ log
=4.9+log
=5.85
As 90% conjugate base is present, so propanoic acid present 10%.
Answer:
55.18 L
Explanation:
First we convert 113.4 g of NO₂ into moles, using its molar mass:
- 113.4 g ÷ 46 g/mol = 2.465 mol
Then we<u> use the PV=nRT formula</u>, where:
- P = 1atm & T = 273K (This means STP)
- R = 0.082 atm·L·mol⁻¹·K⁻¹
Input the data:
- 1 atm * V = 2.465 mol * 0.082atm·L·mol⁻¹·K⁻¹ * 273 K
And <u>solve for V</u>:
Answer:
The relative conjugate acids and bases are listed below:
CH3NH2 → CH3NH3+
H2SO3→ HSO3-
NH3→ NH4+
Explanation:
In a Brønsted-Lowry acid-base reaction, a conjugate acid is the species resulting from a base accepting a proton; likewise, a conjugate base is the species formed after an acid has donated a hydrogen atom (proton).
To this end:
- HSO3- is the conjugate acid of H2SO3 i.e sulfuric acid has lost a proton (H+)
- NH4+ is the conjugate acid of NH3 i.e the base ammonia has gained a proton (H+)
- OH- is the conjugate base of H20
- CH3NH3+ is the conjugate base of the base CH3NH2 methylamine