Answer:
27.22 dm³
Explanation:
Given parameters:
number of moles = 1 mole
temperature= 50°C, in K gives 50+ 273 = 323K
Pressure= 98.6kpa in ATM, gives 0.973 ATM
Solution:
Since the unknown is the volume of gas, applying the ideal gas law will be appropriate in solving this problem.
The ideal gas law is mathematically expressed as,
Pv=nRT
where P is the pressure of the gas
V is the volume
n is the number of moles
R is the gas constant
T is the temperature
Input the parameters and solve for V,
0.973 x V = 1 x 0.082 x 323
V= 27.22 dm³
Answer:
Explanation:
own definitions for the words definite and occupy.
Example sentence
Solid is the state of matter that has a definite shape and volume.
definite:
__________
Example sentence
A larger container will allow a gas to occupy more space.
occupy:
Here's a short answer
Bye Felicia
Turning things to gram so need to convert to the metric system
Answer:
The specific heat of sodium is 1,23J/g°C
Explanation:
Using the atomic weight of sodium (23g/mol) and the atomic weight definition, we have that each mole of the substance has 23 grams of sodium.
starting from this, we use the atomic weight of sodium to convert the units from J / mol ° C to J / g ° C
