1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skad [1K]
2 years ago
13

This boy said he was finna destroy me and winked what does that mean

Chemistry
1 answer:
zloy xaker [14]2 years ago
5 0

Answer:

pipe

Explanation:

You receiving

You might be interested in
i am begging anyone to help me with this! (all tutors i've asked said they can't solve it but i need someone to help me out) - i
9966 [12]

First, we need to calculate how much energy we will get from this combustion.

Assuming the combustion is complete, we have the octane reacting with O₂ to form only water and CO₂, so:

C_8H_{18}+O_2\to CO_2+H_2O

We need to balance the reaction. Carbon only appear on two parts, so, we can start by it:

C_8H_{18}+O_2\to8CO_2+H_2O

Now, we balance the hydrogen:

C_8H_{18}+O_2\to8CO_2+9H_2O

And in the end, the oxygen:

C_8H_{18}+\frac{25}{2}O_2\to8CO_2+9H_2O

We can multiply all coefficients by 2 to get integer ones:

2C_8H_{18}+25O_2\to16CO_2+18H_2O

Now, we need to use the enthalpies of formation to get the enthalpy of reaction of this reaction.

The enthalpy of reaction can be calculated by adding the enthalpies of formation of the products multiplied by their stoichiometric coefficients and substracting the sum of enthalpies of formation of the reactants multiplied by their stoichiometric coefficients.

For the reactants, we have (the enthalpy of formation of pure compounds is zero, which is the case for O₂):

\begin{gathered} \Delta H\mleft\lbrace reactants\mright\rbrace=2\cdot\Delta H\mleft\lbrace C_8H_{18}\mright\rbrace+25\cdot\Delta H\mleft\lbrace O_2\mright\rbrace \\ \Delta H\lbrace reactants\rbrace=2\cdot(-250.1kJ)+25\cdot0kJ \\ \Delta H\lbrace reactants\rbrace=-500.2kJ+0kJ \\ \Delta H\lbrace reactants\rbrace=-500.2kJ \end{gathered}

For the products, we have:

\begin{gathered} \Delta H_{}\mleft\lbrace product\mright\rbrace=16\cdot\Delta H\lbrace CO_2\rbrace+18\cdot\Delta H\lbrace H_2O\rbrace \\ \Delta H_{}\lbrace product\rbrace=16\cdot(-393.5kJ)+18\cdot(-285.5kJ) \\ \Delta H_{}\lbrace product\rbrace=-6296kJ-5139kJ \\ \Delta H_{}\lbrace product\rbrace=-11435kJ \end{gathered}

Now, we substract the rectants from the produtcs:

\begin{gathered} \Delta H_r=\Delta H_{}\lbrace product\rbrace-\Delta H\lbrace reactants\rbrace \\ \Delta H_r=-11435kJ-(-500.2kJ) \\ \Delta H_r=-10934.8kJ \end{gathered}

Now, this enthalpy of reaction is for 2 moles of C₈H₁₈, so for 1 mol of C₈H₁₈ we have half this value:

\Delta H_c=\frac{1}{2}\Delta H_r=\frac{1}{2}\cdot(-10934.8kJ)=-5467.4kJ

Now, we have 100 g of C₈H₁₈, and its molar weight is approximately 114.22852 g/mol, so the number of moles in 100 g of C₈H₁₈ is:

\begin{gathered} M_{C_8H_{18}}=\frac{m_{C_8H_{18}}}{n_{C_8H_{18}}} \\ n_{C_8H_{18}}=\frac{m_{C_8H_{18}}}{M_{C_8H_{18}}}=\frac{100g}{114.22852g/mol}\approx0.875438mol \end{gathered}

Since we have approximately 0.875438 mol, and 1 mol releases -5467.4kJ when combusted, we have:

Q=-5467.4kJ/mol\cdot0.875438mol\approx-4786.37kJ

Now, for the other part, we need to calculate how much heat it is necessary to melt a mass, <em>m</em>.

First, we have to heat the ice to 0 °C, so:

\begin{gathered} Q_1=m\cdot2.010J/g.\degree C\cdot(0-(-10))\degree C \\ Q_1=m\cdot2.010J/g\cdot10 \\ Q_1=m\cdot20.10J/g \end{gathered}

Then, we need to melt all this mass, so we use the latent heat now:

Q_2=n\cdot6.03kJ/mol

Converting mass to number of moles of water we have:

\begin{gathered} M=\frac{m}{n} \\ n=\frac{m}{M}=\frac{m}{18.01528g/mol} \end{gathered}

So:

Q_2=\frac{m}{18.01528g/mol}_{}\cdot6.03kJ/mol\approx m\cdot0.334716kJ/g

Adding them, we have a total heat of:

\begin{gathered} Q_T=m\cdot20.10J/g+m\cdot0.334716kJ/g \\ Q_T=m\cdot0.02010kJ/g+m\cdot0.334716kJ/g \\ Q_T=m\cdot0.354816kJ/g \end{gathered}

Since we have a heat of 4786.37 kJ form the combustion, we input that to get the mass (the negative sign is removed because it only means that the heat is released from the reaction, but now it is absorbed by the ice):

\begin{gathered} 4786.37kJ=m\cdot0.354816kJ/g \\ m=\frac{4786.37kJ}{0.354816kJ/g}\approx13489g\approx13.5\operatorname{kg} \end{gathered}

Since we have a total of 20kg of ice, we can clculate the percent using it:

P=\frac{13.5\operatorname{kg}}{20\operatorname{kg}}=0.675=67.5\%

5 0
1 year ago
Mixtures of benzene and cyclohexane exhibit ideal behavior. A solution was created containing 1.5 moles of liquid benzene and 2.
goblinko [34]

Answer:

Vapour pressure of cyclohexane at 50°C is 490torr

Vapour pressure of benzene at 50°C is 90torr

Explanation:

Using Raoult's law, pressure of a solution is defined by the sum of the product sbetween mole fraction of both solvents and pressure of pure solvents.

P_{solution} = X_{A}P^0_{A}+X_{B}P^0_{B}

In the first solution:

X_{cyclohexane}=\frac{2.5mol}{2.5mol+1.5mol} =0.625

X_{benzene}=\frac{1.5mol}{2.5mol+1.5mol} =0.375

340torr = 0.625P^0_{A}+0.375P^0_{B} <em>(1)</em>

For the second equation:

X_{cyclohexane}=\frac{3.5mol}{3.5mol+1.5mol} =0.700

X_{benzene}=\frac{1.5mol}{3.5mol+1.5mol} =0.300

370torr = 0.700P^0_{A}+0.300P^0_{B}<em>(2)</em>

Replacing (2) in (1):

340torr = 0.625P^0_{A}+0.375(1233.3-2.333P^0_{A})

340torr = 0.625P^0_{A}+462.5-0.875P^0_{A}

-122.5torr = -0.250P°A

P^0_{A} = 490 torr

<em>Vapour pressure of cyclohexane at 50°C is 490torr</em>

And for benzene:

370torr = 0.700*490torr+0.300P^0_{B}

P^0_{B}=90torr

<em>Vapour pressure of benzene at 50°C is 90torr</em>

3 0
3 years ago
What is the volume occupied by 4.20 miles of oxygen gas (O2) at STP
Drupady [299]

Answer: 94.13 L

Explanation: In STP in an ideal gas there is a standard value for both temperature and pressure. At STP,pressure is equal to 1atm and the temperature at 0°C is equal to 273.15K. This problem is an ideal gas so we use PV=nRT where R is a constant R= 0.08205 L.atm/mol.K.

To find volume, derive the equation, it becomes V=nRT/P. Substitute the values. V= 4.20 mol( 0.08205L.atm/mol.K)(273.15K) / 1 atm = 94.13 L. The mole units, atm and K will be cancelled out and L will be the remaining unit which is for volume.

8 0
3 years ago
a piece of food is burned in a calorimeter that contains 200.0g of water. If the temperature of the water rose from 65.0°C to 83
Flauer [41]

Answer: 15062.4 Joules

Explanation:

The quantity of heat energy (Q) required to heat a substance depends on its Mass (M), specific heat capacity (C) and change in temperature (Φ)

Thus, Q = MCΦ

Since,

Q = ?

Mass of food = 200.0g

C = 4.184 j/g°C

Φ = (Final temperature - Initial temperature)

= 83.0°C - 65.0°C = 18°C

Then, Q = MCΦ

Q = 200.0g x 4.184 j/g°C x 18°C

Q = 15062.4 J

Thus, 15062.4 joules of heat energy was contained in the food.

4 0
3 years ago
Which kind of atoms would typically form an ionic bond?
Sunny_sXe [5.5K]
An ionic bond is a type of chemical bond formed through an electrostatic attraction between two oppositely charged ions. Ionic bonds are formed between a cation, which is usually a metal, and an anion, which is usually a nonmetal. A covalent bond involves a pair of electrons being shared between at
6 0
3 years ago
Read 2 more answers
Other questions:
  • What’s the answer? And if you find the answer in a pdf, comment the link.
    13·1 answer
  • The plants characteristic green color comes from the chemical
    7·1 answer
  • Does a solution have to involve a liquid? Explain your answer
    12·2 answers
  • Why are the testicles outside the body instead of inside?
    6·1 answer
  • PLEASE HELP ASAP!!! LOTS OF POINTS^^
    7·1 answer
  • Why is it important to keep the water on Earth pollution free? Explain.
    12·2 answers
  • The white Dwarfs are a group of stars that are-
    5·1 answer
  • WHAT MEASURING EQUIPMENT DID LEANNE USE TO GET HER RESULTS
    11·2 answers
  • QUESTION 19
    5·1 answer
  • Determine the concerntration In [M] of a solution that has an absorbable of 0.420
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!