Answer:
It cannot conduct electricity, however adding salt or sugar will make the water have impurities/other substance making it easier to conduct electricity
Explanation:
Distilled water by itself does not contain impurities, thus, it cannot <em>conduct </em>electricity.
When you put salt in water, the water molecules pull the sodium and chlorine ions apart so they are floating freely, increasing the conductivity.
For more information, please refer to the internet :D
Have fun studying, and goodluck!
If you are satisfied with this answer, please rate it or give <u><em>brainliest.</em></u>
Answer:
atoms tend to react in order to gain 8 valence electrons
Explanation:
The octet rule describes the tendency of atoms of elements to react in order to have eight electrons in their valence shell. This is because having eight valence electrons confers stability to the atoms of these elements in the compounds they form.
The octet rule only does not apply to the transition elements or the inner transition elements as only the s and p electrons are involved. the electronic configuration in atoms having an octet is s²p⁶.
For example, sodium atom has one valence electron in its valence shell but a complete octet in the inner shell; it will react with chlorine atom which has seven valence electrons to form a stable compound, sodium chloride by donating its one valence electron in order to have an octet. Similarly, the chlorine atom will then have an octet by accepting the one electron from sodium atom.
Volume of osmium = 1.01(0.223)(0.648) = 0.14595 cm3
Density = mass / volume
So density x volume = mass of osmium
22.6 x 0.14595 = 3.29845 g
The given question is incomplete. The complete question is as follows.
Which of the following best helps explain why an increase in temperature increases the rate of a chemical reaction?
(a) at higher temperatures, high-energy collisions happen less frequently.
(b) at low temperatures, low-energy collisions happen more frequently.
(c) at higher temperatures, less-energy collisions happen less frequently.
(d) at higher temperatures, high-energy collisions happen more frequently
Explanation:
When we increase the temperature of a chemical reaction then molecules of the reactant species tend to gain kinetic energy. As a result, they come into motion which leads to more number of collisions within the molecules.
Therefore, chemical reaction will take less amount of time in order to reach its end point. This means that there will occur an increase in rate of reaction.
Thus, we can conclude that the statement at higher temperatures, high-energy collisions happen more frequently, best explains why an increase in temperature increases the rate of a chemical reaction.