Answer:
Scientific knowledge is used to create new technologies. New technologies often allow scientists to explore nature in different ways and make new discoveries.
Explanation:
Answer:
3 km/h
Explanation:
Let's call the rowing speed in still water x, in km/h.
Rowing speed in upstream is: x - 2 km/h
Rowing speed in downstream is: x + 2 km/h
It took a crew 9 h 36 min ( = 9 3/5 = 48/5) to row 8 km upstream and back again. Therefore:
8/(x - 2) + 8/(x + 2) = 48/5 (notice that: time = distance/speed)
Multiplying by x² - 2², which is equivalent to (x-2)*(x+2)
8*(x+2) + 8*(x-2) = (48/5)*(x² - 4)
Dividing by 8
(x+2) + (x-2) = (6/5)*(x² - 4)
2*x = (6/5)*x² - 24/5
0 = (6/5)*x² - 2*x - 24/5
Using quadratic formula






A negative result has no sense, therefore the rowing speed in still water was 3 km/h
Answer:
0.278 m/s
Explanation:
We can answer the problem by using the law of conservation of momentum. In fact, the total momentum before the collision must be equal to the total momentum after the collision.
So we can write:

where
m = 0.200 kg is the mass of the koala bear
u = 0.750 m/s is the initial velocity of the koala bear
M = 0.350 kg is the mass of the other clay model
v is their final combined velocity
Solving the equation for v, we get

<span>AS T1,T2,T3 are the tensions in the ropes,assuming that there are Three blocks of mass 3m, 2m, and m.T3 is the string between 3m and 2m,T2 is the string between 2m and m ,T1 is the string attached to m thus T1 pulls the whole set of blocks along, so it must be the largest. T2 pulls the last
two masses, but T3 only pulls the last mass, so T3 < T2 < T1.</span>