Answer:
Failure is a lesson
Explanation:
Without failure, we'd be less capable of compassion, empathy, kindness, and great achievement. It's through failure that we learn the greatest lessons that life could teach us.
<span>Based on the experience of the responder, to correctly calculate measurements in real-world. Firstly is to avoid errors as much as possible. Errors are what makes your measurement invalid and unreliable. There are two types of error which is called the systematic error and the random error. Each error has different sources. Words that were mentioned –invalid and unreliable are very important key aspects to determine that your measure is truly accurate and consistent. Some would recommend using the mean method, doing three trials in measuring and getting their mean, in response to this problem.</span>
Answer: 1:4.69
Explanation:
The ratio can be expressed as:
Ua/Ub= √(Mb/Ma)
Where Ua/Ub is the ratio of velocity of hydrogen to carbon dioxide and Ma is the molecular mass of hydrogen gas= 2
Mb is the molecular mass of CO2 = 44
Therefore
Ua/Ub= √(44/2)
Ua/Ub = 4.69
Therefore the ratio of velocity of hydrogen gas to carbon dioxide = 1:4.69
which implies hydogen is about 4.69 times faster than carbon dioxide.
Answer:
temperature
Explanation:
Celsius is a unit of temperature. Another example of this would be Kelvin or Fahrenheit.
The answer is: the pressure inside a can of deodorant is 1.28 atm.
Gay-Lussac's Law: the pressure of a given amount of gas held at constant volume is directly proportional to the Kelvin temperature.
p₁/T₁ = p₂/T₂.
p₁ = 1.0 atm.; initial pressure
T₁ = 15°C = 288.15 K; initial temperature.
T₂ = 95°C = 368.15 K, final temperature
p₂ = ?; final presure.
1.0 atm/288.15 K = p₂/368.15 K.
1.0 atm · 368.15 K = 288.15 K · p₂.
p₂ = 368.15 atm·K ÷ 288.15 K.
p₂ = 1.28 atm.
As the temperature goes up, the pressure also goes up and vice-versa.