Answer: Thus volume in liters is
Explanation:
Molarity is defined as the number of moles of solute dissolved per liter of the solution.
To calculate the number of moles for given molarity, we use the equation:
.....(1)
Molarity of silver oxide solution =
Moles of silver oxide =
Volume of solution in L = ?
Putting values in equation 1, we get:
Thus volume in liters is
Answer:
1.23 j/g. °C
Explanation:
Given data:
Mass of metal = 35.0 g
Initial temperature = 21 °C
Final temperature = 52°C
Amount of heat absorbed = 320 cal (320 ×4.184 = 1338.88 j)
Specific heat capacity of metal = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 52°C - 21 °C
ΔT = 31°C
1338.88 j= 35 g ×c× 31°C
1338.88 j= 1085 g.°C ×c
1338.88 j/1085 g.°C = c
1.23 j/g. °C = c
When the total surface area of the solute particles is increased, the solute dissolves more rapidly. Breaking a solute into smaller pieces increases its surface area and increases its rate of solution. So, any answer with “as surface area increases, solid dissolves faster” would be correct. :)
Answer:
Mass in kg = 4.7*10^19 kg
Mass in tons = 5.2*10^16 tons
Explanation:
<u>Given:</u>
Total volume of sea water = 1.5*10^21 L
Mass % NaCl in seawater = 3.1%
Density of seawater = 1.03 g/ml
<u>To determine:</u>
Total mass of NaCl in kg and in tons
<u>Calculation:</u>
Unit conversion:
1 L = 1000 ml
The volume of seawater in ml is:
To convert mass from g to Kg:
1000 g = 1 kg
To convert mass from g to tons:
1 ton = 9.072*10^6 g
Answer: 8 moles
Explanation:
Nc2H6= 4 mol
2C2H6 + 7O2 → 4CO2+6H2O
CO2=4/2⋅4
NCO2= 8 moles
( I write this on paper so the letters and format might be confusing) sorry!!