Answer:
Dude its just a picture of evaporation taking place in a.....................I don't know.
Explanation:
Answer:
The force of gravity at the shell will be extremely great on me due to the huge mass collapsed into the small radius.
<em>At the center of the shell, the gravitational forces all around should cancel out, giving me a feeling of weightlessness; which will be a lesser force compared to that felt while standing on the shell.</em>
<em></em>
Explanation:
For the collapsed earth:
mass = 5.972 × 10^24 kg
radius = 1 ft
according to Newton's gravitation law, the force of gravity due to two body with mass is given as
Fg = GMm/
Where Fg is the gravitational force between the two bodies.
G is the gravitational constant
M is the mass of the earth
m is my own mass
R is the distance between me and the center of the earths in each case
For the case where I stand on the shell:
radius R will be 1 ft
Fg = GMm/
Fg = GMm
For the case where I stand stand inside the shell, lets say I'm positioned at the center of the shell. The force of gravity due to my mass will be balanced out by all other masses around due to the shell of the hollow earth. This cancelling will produce a weightless feeling on me.
Answer:
The answer to the question above is explained below
Explanation:
The reaction quotient, Q, is a measure of the relative amounts of reactants and products during a chemical reaction as it can be used to determine in which direction a reaction will proceed at a given point in time. Equilibrium constant is the numerical value of reaction quotient at the end of the reaction, when equilibrium is reached.
If Q = K then the system is already at equilibrium. If Q < Keq, the reaction will move toward the products to reach equilibrium. If Q > Keq, the reaction will move toward the reactants in order to reach equilibrium. Therefore, by comparing Q and K, we can determine the direction of a reaction.
Where Q= reaction quotient and Keq= equilibrium constant for the reaction.
The larger the equilibrium constant, the further the equilibrium lies toward the products. Reaction quotient is a quantity that changes as a reaction system approaches equilibrium.
We can determine the equilibrium constant based on equilibrium concentrations. K is the constant of a certain reaction when it is in equilibrium. Equilibrium occurs when there is a constant ratio between the concentration of the reactants and the products.
Answer:
2.66 m/s² .
Explanation:
Initial velocity , u = 0 m/s
Final Velocity , v = 8 m/s
Time Taken , t = 3 s
So , Acceleration = (v-u)/t = (8 m/s - 0 m/s) /3 sec . = 8/3 m/s² = 2.66 m/s²