Both have positive charge. In fact, an alpha particle IS a nucleus of a Helium atom.
<h2>
<em><u>A</u></em><em><u>N</u></em><em><u>S</u></em><em><u>W</u></em><em><u>E</u></em><em><u>R</u></em><em><u>S</u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em><em><u> </u></em></h2>
<em>1) The relationship in between the electrical energy carriesd by the transmission wires and the amount of the heat loss in it is due to the reason that when the electricity is flown through the wires there are some resistance found in these wires which creates a disturbance in the efficient flow of electricty.Also we know that current have an heating effect when it is in motion as due to if a large amount or magnitude of electricity is flown through the transmission wires it will carry a larger heat effected and also due to the resistance is provided by the wires and so the process of heat loss takes place.</em>
<em>2)It is important to minimize current in transmission wires due to minimize the heat loss and resistance on flowing electric current to make the system more efficient </em>
<em><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u></em><em> 3)Given Resistance = 250 ohms </em>
<em>Electric potential = 150 volts </em>
<em>so we know Power = </em>
<em>volt^2/Resistance = </em>
<em>=</em><em>(150^2/250)(ohms/volts)</em>
<em>=</em><em>(22500/250)watt = 9</em><em>0</em><em> </em><em>w</em><em>a</em><em>t</em><em>t</em><em> </em>
<em>4)Heat energy (H) = Power(P)×Time(t)</em>
<em>4)Heat energy (H) = Power(P)×Time(t)= (90×2)joules = 180 joul</em><em>e</em><em>s</em>
<em>H</em><em>o</em><em>p</em><em>e</em><em> </em><em>i</em><em>t</em><em> </em><em>h</em><em>e</em><em>l</em><em>p</em><em>s</em>
Cumulus and cumulonimbus<span />
<span>Her center of mass will rise 3.7 meters.
First, let's calculate how long it takes to reach the peak. Just divide by the local gravitational acceleration, so
8.5 m / 9.8 m/s^2 = 0.867346939 s
And the distance a object under constant acceleration travels is
d = 0.5 A T^2
Substituting known values, gives
d = 0.5 9.8 m/s^2 (0.867346939 s)^2
d = 4.9 m/s^2 * 0.752290712 s^2
d = 3.68622449 m
Rounded to 2 significant figures gives 3.7 meters.
Note, that 3.7 meters is how much higher her center of mass will rise after leaving the trampoline. It does not specify how far above the trampoline the lowest part of her body will reach. For instance, she could be in an upright position upon leaving the trampoline with her feet about 1 meter below her center of mass. And during the accent, she could tuck, roll, or otherwise change her orientation so she's horizontal at her peak altitude and the lowest part of her body being a decimeter or so below her center of mass. So it would look like she jumped almost a meter higher than 3.7 meters.</span>