The correct answer for this question is this one: "The drops dripped from a bloody knife about 2 ft above the ground."
<span>On a floor directly underneath a second-floor balcony, there are several spherical drops of blood about 7 mm in diameter. The statement that best accounts for the drops is that <em>the </em></span><span><em>drops dripped from a bloody knife about 2 ft above the ground.</em>
</span>
Hope this helps answer your question and have a nice day ahead.
Measure a whole stack (one in which you know the number of sheets), then divide your measurement by the number of sheets in that stack
Answer:
The correct answer to the following question will be Option A (moment arm; pivot point).
Explanation:
- The moment arm seems to be the duration seen between joint as well as the force section trying to act mostly on the joint. Each joint that is already implicated in the workout seems to have a momentary arm.
- The moment arm extends this same distance from either the pivot point to just the position of that same pressure exerted.
- The pivotal point seems to be the technical indicators required to fully measure the appropriate demand trends alongside different time-frames.
The other three choices are not related to the given situation. So that option A is the appropriate choice.
Answer:
Magnetic field lines form closed loops around current carrying straight wires.
Explanation:
Magnetic field lines is known to form closed loop (which also serves as a bar magnet) around current carrying conductor in a magnetic field. This direction of the loop around the conductor either clockwise or anticlockwise will determine the direction of current in the conductor.
This directions can be determined using the Maxwell cockscrew or clenched fist rule.
According to clenched fist rule which states if the conductor is grasp with the right hand, the curled finger will point in the direction of the magnetic field and the thumb will point in the direction of the current.
Note that the magnetic field lines around the conductor also behaves like a bar magnet.