Explanation:
velocity of disc 
lets call (h) 1 m to make it simple.
= 3.614 m/s
m/s pointing towards this:


velocity of hoop=
lets call (h) 1m to make it simple again.
m/s
![\sqrt(gh) = sqrt(hg)so [tex]4×V_d= \sqrt(4/3hg)V_h=\sqrt(hg)](https://tex.z-dn.net/?f=%5Csqrt%28gh%29%20%3D%20sqrt%28hg%29%3C%2Fp%3E%3Cp%3Eso%20%5Btex%5D4%C3%97V_d%3D%20%5Csqrt%284%2F3hg%29V_h%3D%5Csqrt%28hg%29)
The disc is the fastest.
While i'm on this subject i'll show you this:
Solid ball 
solid disc 
hoop 
The above is simplified from linear KE + rotational KE, the radius or mass makes no difference to the above formula.
The solid ball will be the faster of the 3, like above i'll show you.
solid ball: velocity 
let (h) be 1m again to compare.
m/s
solid disk speed 
uniform hoop speed 
solid sphere speed 
"a black hole forms when any object reaches a certain critical density, and its gravity causes it to collapse to an almost infinitely small pinpoint."
I know its not straight forward with the answer
The answer is:
All the above
The explanation:
The volume and the temperature and the number of particles will affect the pressure of an enclosed gas.
because according to boyle's law when the temperature constant so the pressure and volume of a gas have an inverse relationship, when temperature is constant.
when:
PV = nRT
when p is the pressure
V is the volume
n is number of moles
T is temperature
from this law we can know that there is a relation between P and V and when n has a relation with the number of particles so:
volume , temperature and number of particles affect the pressure of an enclosed gas.
Answer:
C)Earth's orbital speed is greater when it is closer to the Sun than when it is farther from the Sun.
Explanation:
We can use Kepler's 2nd law or the law of area to answer this question.
The law states that the rate of area swept out by a planet's orbit is same throughout the orbit. For the farthest point since the distance is large as compared to to the nearest point, the possibility that area swept is large. Hence, to compensate the extra swept area. the orbital speed has to decrease at the largest point.
Hence, planet's speed is greater when it is closer to sun than the speed when it is farther.
The answer to this question is:
<span>Which of the following is an example of potential energy?
A-"A </span><span>bird positioned on the edge of a high cliff"
Hoped This Helped, </span><span>
Jfleming2544
</span>Your Welcome :)