<span>1. What is the molar mass of gold?
Molar mass is a unit that expresses the mass of a molecule per one mol. The molar mass can be obtained by adding the neutron with the proton of the atoms. Gold has atomic number 79 so the proton is 79. The number of the neutron is 118. Then the molar mass would be: 79 + 118 = </span>197 g/mol<span>
</span><span>2. Calculate the number of moles of gold (Au) in the sample. Show your work.
</span>In this question, you are given the mass of the gold and asked for how many moles the sample has. To find the number of moles you just need to divide the weight by the molar mass.
For 45.39 grams of gold, the number of moles would be:
45.39 / (197g/mol)= 0.23 moles
3. Calculate the number of atoms of gold (Au) in the sample. Show your work.Moles is unit of a number of molecules but 1 mol doesn't represent 1 molecule. The number of atoms can be obtained by multiplying the number of moles with Avogadro number. The calculation would be:
0.23 moles * (6.023 * 10^23 molecules/mol)= 1.387 * 10^23 molecules
The amount of energy released when 0.06 kg of mercury condenses at the same temperature can be calculated using its latent heat of fusion which is the opposite of melting. Latent heat of fusion and melting can be used because they have the same magnitude, but opposite signs. Latent heat is the amount of energy required to change the state or phase of a substance. For latent heat, there is no temperature change. The equation is:
E = m(ΔH)
where:
m = mass of substance
ΔH = latent heat of fusion or melting
According to data, the ΔH of mercury is approximately 11.6 kJ/kg.
E = 0.06kg (11.6 kJ/kg) = 0.696 kJ or 696 J
The answer is D. 697.08 J. Note that small differences could be due to rounding off or different data sources.
And what should I do with this information
Answer:
waste water from nuclear power plant is
generally very harmful for our environment
and for everyone
hope it will help
Complete question:
ΔU for a van der Waals gas increases by 475 J in an expansion process, and the magnitude of w is 93.0 J. calculate the magnitude of q for the process.
Answer:
The magnitude of q for the process 568 J.
Explanation:
Given;
change in internal energy of the gas, ΔU = 475 J
work done by the gas, w = 93 J
heat added to the system, = q
During gas expansion process, heat is added to the gas.
Apply the first law of thermodynamic to determine the magnitude of heat added to the gas.
ΔU = q - w
q = ΔU + w
q = 475 J + 93 J
q = 568 J
Therefore, the magnitude of q for the process 568 J.