Silicon is the second most abundant element in the Earth´s crust and makes up around 27% of it.
Answer:
The three statements are true
Explanation:
For the reaction:
I₂O₅(s) + 5CO(g) → I₂(s) + 5CO₂(g)
State oxidation of iodine in I₂O₅ is:
5 O²⁻ = 10⁻
As you have 2 I and the molecule has no charge, <em>oxidation state of I is +5</em>.
The carbon in CO has an oxidation state of +2 and in CO₂ is +4. That means <em>the carbon is oxidized</em>
<em />
An oxidizing agent is a substance that produce the oxidation of the agent that reacts with this one. CO is oxidized because of I₂O₅ is producing its oxidation being <em>the oxidizing agent</em>
<em></em>
Thus,<em> the three statements are true</em>.
Ionic bonds are forces that hold together electrostatic forces of attractions between oppositely charged ions. Ionic bonds have an electronegativity difference greater than or equal to 2. Covalent bonds have an electronegativity difference that is less than 2.
We can use the heat equation,
Q = mcΔT
where Q is the amount of energy transferred (J), m is the mass of the substance (kg), c is the specific heat (J g⁻¹ °C⁻¹) and ΔT is the temperature difference (°C).
Q = 11.2 kJ = 11200 J
m = <span>145 g
</span>c = ?
ΔT = (67 - 22) °C = 45 °C
By applying the formula,
11200 J = 145 g x c x 45 °C
c = 1.72 J g⁻¹ °C⁻¹
Hence, specific heat of benzene is 1.72 J g⁻¹ °C⁻¹.
Legumes are much easier to grow than other plants, and are more adaptable.