Complete question:
At a particular instant, an electron is located at point (P) in a region of space with a uniform magnetic field that is directed vertically and has a magnitude of 3.47 mT. The electron's velocity at that instant is purely horizontal with a magnitude of 2×10⁵ m/s then how long will it take for the particle to pass through point (P) again? Give your answer in nanoseconds.
[<em>Assume that this experiment takes place in deep space so that the effect of gravity is negligible.</em>]
Answer:
The time it will take the particle to pass through point (P) again is 1.639 ns.
Explanation:
F = qvB
Also;

solving this two equations together;

where;
m is the mass of electron = 9.11 x 10⁻³¹ kg
q is the charge of electron = 1.602 x 10⁻¹⁹ C
B is the strength of the magnetic field = 3.47 x 10⁻³ T
substitute these values and solve for t

Therefore, the time it will take the particle to pass through point (P) again is 1.639 ns.
Answer:
The mechanical advantage of the system is 8
Explanation:
the mechanical advantage measures how much the system multiplies the input force to get the output.
In the given:
The input force (effort) is 20 Newton
The output force (load) is 160 Newton
This means that the mechanical advantage is:
mechanical advantage = load / effort = 160 / 20 = 8
Note that the mechanical advantage is unit-less (has no unit) since it is a ratio between two forces.
Hope this helps :)
The correct answer is option B, representational
All the painters in Peale family were involved in paintings which represent the day today life activities or were portraits or mimic some natural forms.
Charles Willson Peale , the head of the Peale family was known for painting sixty portraits of the first American president, George Washington. He also painted portraits of portraits of notable people of the society such as Benjamin Franklin, Thomas Jefferson etc.
Most of the paintings of peale family were based on the theme of family, art and science. Six of Peale’s son were known for their renaissance paintings. His oldest son Raphelle was known for still life paintings.
Titian Ramsay Peale, Charles’ youngest son was a naturalist painter.
Answer:
V_{average} =
, V_{average} = 2 V
Explanation:
he average or effective voltage of a wave is the value of the wave in a period
V_average = ∫ V dt
in this case the given volage is a square wave that can be described by the function
V (t) = 
to substitute in the equation let us separate the into two pairs
V_average = 
V_average = 
V_{average} = 
we evaluate V₀ = 4 V
V_{average} = 4 / 2)
V_{average} = 2 V
The force needed to give a car of mass 800 kg an acceleration of 2.0 ms-² is 1600N.
<h3>How to calculate force?</h3>
The force needed to push an object can be calculated by multiplying the mass of the object by its acceleration as follows:
Force = mass × acceleration
According to this question, a car of mass 800 kg has an acceleration of 2.0 ms−². The force is calculated as follows:
Force = 800kg × 2m/s²
Force = 1600N
Therefore, the force needed to give a car of mass 800 kg an acceleration of 2.0 ms-² is 1600N.
Learn more about force at: brainly.com/question/13191643
#SPJ1