Answer:
Approximately 1.62 × 10⁻⁴ V.
Explanation:
The average EMF in the coil is equal to
,
Why does this formula work?
By Faraday's Law of Induction, the EMF
induced in a coil (one loop) is equal to the rate of change in the magnetic flux
through the coil.
.
Finding the average EMF in the coil is similar to finding the average velocity.
.
However, by the Fundamental Theorem of Calculus, integration reverts the action of differentiation. That is:
.
Hence the equation
.
Note that information about the constant term in the original function will be lost. However, since this integral is a definite one, the constant term in
won't matter.
Apply this formula to this question. Note that
, the magnetic flux through the coil, can be calculated with the equation
.
For this question,
is the strength of the magnetic field.
is the area of the coil.
is the number of loops in the coil.
is the angle between the field lines and the coil. - At
, the field lines are parallel to the coil,
. - At
, the field lines are perpendicular to the coil,
.
Initial flux:
.
Final flux:
.
Average EMF, which is the same as the average rate of change in flux:
.
Lunar phase is the same wherever on Earth you observe
<span>Last (third) quarter rises at midnight, sets at noon. </span>
<span>First quarter rises at noon, sets at midnight</span>
Explanation:
I'm not sure to be honest lol
Answer:
Asteroids are objects made of clay and silicate that orbit the sun but are too small to be considered planets.
Most asteroids revolve around the sun in an orbit between those of Mars and Jupiter.
They form a wide band called the Asteroid belt.
Other asteroids have orbits that cross Earth’s orbit. These asteroids are called Earth-crossers.
Asteroids probably consist of matter that never agglomerated into a planet when the solar system was forming.
The comet’s core is composed of ice and dust.
Comets heat up and begin to change from a solid to a gas as they approach the sun.
The matter surrounding a comet’s core is vaporized and forms a very bright halo of ice or dust not sure, and an enormous cloud of dust or gasses not sure envelopes the head of the comet.
Answer:
60 Ω
Explanation:
R(com) = 15 Ω
1/R(com) = 1/R1 + 1/R2 + 1/R3 ..... + 1/Rn
1/15 = 1/20 + 1/R2
1/R2 = 1/15 - 1/20
1/R2 = (4 - 3) / 60
1/R2 = 1/60
R2 = 60 Ω
así, la combinada de resistencia necesaria es 60 Ω