Answer:

Explanation:
The electrostatic potential energy for pair of charge is given by
U=1/4π∈₀×(q₁q₂/r)
Hence for a system of three charges the electrostatic potential energy can be found by adding up the potential energy for all possible pairs or charges.For three equal charges on the corners of an equilateral triangle,the electrostatic potential energy is given by:
U=1/4π∈₀×(q²/r)+1/4π∈₀×(q²/r)+1/4π∈₀×(q²/r)
U=3×1/4π∈₀×(q²/r)
Substitute given values
So
Technically, it should roll forever.
The first law of thermodynamics can be written as

where

is the variation of internal energy of the system

is the amount of heat absorbed by the system

is the work done by the system on the surrounding.
Using this form, the sign convention for Q and W becomes:
Q > 0 --> heat absorbed by the system (because it increases the internal energy)
Q < 0 --> heat released by the system (because it decreases the internal energy)
W > 0 --> work done by the system (for instance, an expansion: when the system expands, it does work on the surrounding, and so the internal energy decreases, this is why there is a negative sign in the formula Q-W)
W < 0 --> work done by the surrounding on the system (for instance, a compression: when the system is compressed, the surrounding is doing work on the system, and so the internal energy of the system increases)
Answer:
6666.67 Newtons
Explanation:
The formula F=ma (force is equal to mass multiplied by acceleration) can be used to calculate the answer to this question.
In this case:
- mass= 0.1mg= 1*10^-7 kg
- velocity= 4.00*10^3 m/s
- time= 6.00*10^-8 s
Using velocity and time, acceleration can be calculated as:
Substituting these values into the formula F=ma, the answer is:
- F= (1*10^-7)kg * (6.667*10^10) m/s²
- F= 6666.67 Newtons of force
Is the answer you are looking for Gravity? Gravity is what pulls us down to earth.