1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Evgen [1.6K]
3 years ago
12

Which hypothenical scenerio would you result in the moon not having dofferent phases? A.The moon takes twice as long as it does

now to orbit the earth. B.Earth takes twice as long as it does now to orbit the sun C Earth has 2 moons. D.The moon always stays in one position relative to the earth and sun. Explain how you got your answer. Who ever answers best gets brainliest!

Physics
1 answer:
maw [93]3 years ago
5 0
<span>The hypothetical scenario that would result in the moon not having different phases would be t</span>he moon always stays in one position relative to the earth and sun. Why? If the moon didn't have an phases it would stay in one position. Phases mean change, and if you observe the moon every night, you'll see how it changes; it repeats, so thus it's a pattern. 

So, your correct answer should be: <span>D.The moon always stays in one position relative to the earth and sun.</span>
You might be interested in
What are alkaline earth metals used for?
Tomtit [17]

Answer:

C firework

Explanation:

from Quizlet

6 0
3 years ago
Read 2 more answers
Which changes in an electric motor will make the motor stronger? select 3 options. using a stronger permanent magnet using a wea
Masja [62]

1. Using Strong Permanent. 2. increasing the current. 3. Decreasing the space between Magnets

Explanation:

Brainiest

4 0
2 years ago
El peso de María es de 617,4 N. Si en dos meses pierde 2,5 Kg de masa, ¿cuál será su nuevo peso?
NeTakaya
Two hundred and thirsty years
5 0
3 years ago
Read 2 more answers
Physics B 2020 Unit 3 Test
weqwewe [10]

Answer:

1)

When a charge is in motion in a magnetic field, the charge experiences a force of magnitude

F=qvB sin \theta

where here:

For the proton in this problem:

q=1.602\cdot 10^{-19}C is the charge of the proton

v = 300 m/s is the speed of the proton

B = 19 T is the magnetic field

\theta=65^{\circ} is the angle between the directions of v and B

So the force is

F=(1.602\cdot 10^{-19})(300)(19)(sin 65^{\circ})=8.28\cdot 10^{-16} N

2)

The magnetic field produced by a bar magnet has field lines going from the North pole towards the South Pole.

The density of the field lines at any point tells how strong is the magnetic field at that point.

If we observe the field lines around a magnet, we observe that:

- The density of field lines is higher near the Poles

- The density of field lines is lower far from the Poles

Therefore, this means that the magnetic field of a magnet is stronger near the North and South Pole.

3)

The right hand rule gives the direction of the  force experienced by a charged particle moving in a magnetic field.

It can be applied as follows:

- Direction of index finger = direction of motion of the charge

- Direction of middle finger = direction of magnetic field

- Direction of thumb = direction of the force (for a negative charge, the direction must be reversed)

In this problem:

- Direction of motion = to the right (index finger)

- Direction of field = downward (middle finger)

- Direction of force = into the screen (thumb)

4)

The radius of a particle moving in a magnetic field is given by:

r=\frac{mv}{qB}

where here we have:

m=6.64\cdot 10^{-22} kg is the mass of the alpha particle

v=2155 m/s is the speed of the alpha particle

q=2\cdot 1.602\cdot 10^{-19}=3.204\cdot 10^{-19}C is the charge of the alpha particle

B = 12.2 T is the strength of the magnetic field

Substituting, we find:

r=\frac{(6.64\cdot 10^{-22})(2155)}{(3.204\cdot 10^{-19})(12.2)}=0.366 m

5)

The cyclotron frequency of a charged particle in circular motion in a magnetic field is:

f=\frac{qB}{2\pi m}

where here:

q=1.602\cdot 10^{-19}C is the charge of the electron

B = 0.0045 T is the strength of the magnetic field

m=9.31\cdot 10^{-31} kg is the mass of the electron

Substituting, we find:

f=\frac{(1.602\cdot 10^{-19})(0.0045)}{2\pi (9.31\cdot 10^{-31})}=1.23\cdot 10^8 Hz

6)

When a charged particle moves in a magnetic field, its path has a helical shape, because it is the composition of two motions:

1- A uniform motion in a certain direction

2- A circular motion in the direction perpendicular to the magnetic field

The second motion is due to the presence of the magnetic force. However, we know that the direction of the magnetic force depends on the sign of the charge: when the sign of the charge is changed, the direction of the force is reversed.

Therefore in this case, when the particle gains the opposite charge, the circular motion 2) changes sign, so the path will remains helical, but it reverses direction.

7)

The electromotive force induced in a conducting loop due to electromagnetic induction is given by Faraday-Newmann-Lenz:

\epsilon=-\frac{N\Delta \Phi}{\Delta t}

where

N is the number of turns in the loop

\Delta \Phi is the change in magnetic flux through the loop

\Delta t is the time elapsed

From the formula, we see that the emf is induced in the loop (and so, a current is also induced) only if \Delta \Phi \neq 0, which means only if there is a change in magnetic flux through the loop: this occurs if the magnetic field is changing, or if the area of the loop is changing, or if the angle between the loop and the field is changing.

8)

The flux is calculated as

\Phi = BA sin \theta

where

B = 5.5 T is the strength of the magnetic field

A is the area of the coil

\theta=18^{\circ} is the angle between the  direction of the field and the plane of the loop

Here the loop is rectangular with lenght 15 cm and width 8 cm, so the area is

A=(0.15 m)(0.08 m)=0.012 m^2

So the flux is

\Phi = (5.5)(0.012)(sin 18^{\circ})=0.021 Wb

See the last 7 answers in the attached document.

Download docx
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> docx </span>
<span class="sg-text sg-text--link sg-text--bold sg-text--link-disabled sg-text--blue-dark"> pdf </span>
5 0
3 years ago
Help<br> How much current will flow when a 120 V power supply is connected to a 30<br> resistor ?
AVprozaik [17]
Current= voltage divided by resistance
120/30=4
7 0
3 years ago
Other questions:
  • The magnetic field strength at the north pole of a 2.0-cm-diameter, 8-cm-long Alnico magnet is 0.10 T. To produce the same field
    8·1 answer
  • Is a pressure force a body force or surface force?
    15·2 answers
  • 2 cycleists, 90 miles apart starting riding toward each other at some times one cycles twice as fast as the other if they meet 2
    10·1 answer
  • A particle moving along the x-axis has its velocity described by the function vx =2t2m/s, where t is in s. its initial position
    10·1 answer
  • The single invention of the ______ has advanced what we know about the universe more than any other scientific technology. a. Su
    9·1 answer
  • A mine shaft has an ore elevator hung from a single braided cable of diameter 2.5 cm. Young's modulus of the cable is 10×1010 N/
    8·1 answer
  • Which three characteristics of an object are represented by a motion map
    8·1 answer
  • What can you infer about how traveling changed America? Support your inference with evidence from the text and your own knowledg
    11·1 answer
  • The speed of a wave is 70 m/s. If the wavelength of the wave is 0.4
    11·2 answers
  • A runner wants to run 12.0 km . Her running pace is 8.2 mi/hr . How many minutes must she run? Express your answer using two sig
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!