4d = 24 would be the right equation. To double check you would divide both sides by 4 (the number of legs) to find the amount of dogs.
Answer:
Step-by-step explanation:
You;ll run into this formula a lot. Make sure you study it carefully.
A = 25
a = 5
d = 13
Find n
25 = 5 + 13*(n- 1)
20 = 13(n - 1)
This isn't going to work out. 20/13 does not give a whole number which it should.
Frist you simplify the mixed number: We have a 4/8. To simplify, we will use the common factor 4. Divide the numerator and denominator by 4 and you will get 1/2.
First off, we factor out the expression:

In the bracket, separate 8 out of the expression.
![\displaystyle \large{y = 2[ ( {x}^{2} - 6x + 8)] }\\ \displaystyle \large{y = 2[ ( {x}^{2} - 6x) + 8]}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%5B%20%28%20%7Bx%7D%5E%7B2%7D%20-%206x%20%2B%208%29%5D%20%7D%5C%5C%20%20%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%5B%20%28%20%7Bx%7D%5E%7B2%7D%20-%206x%29%20%2B%208%5D%7D)
In x^2-6x, find the third term that can make up or convert it to a perfect square form. The third term is 9 because:

So we add +9 in x^2-6x.
![\displaystyle \large{y = 2[ ( {x}^{2} - 6x + 9) + 8]}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%5B%20%28%20%7Bx%7D%5E%7B2%7D%20-%206x%20%2B%209%29%20%20%2B%208%5D%7D)
Convert the expression in the small bracket to perfect square.
![\displaystyle \large{y = 2[ {(x - 3)}^{2} + 8]}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%5B%20%20%7B%28x%20-%203%29%7D%5E%7B2%7D%20%20%20%2B%208%5D%7D)
Since we add +9 in the small bracket, we have to subtract 8 with 9 as well.
![\displaystyle \large{y = 2[ {(x - 3)}^{2} + 8 - 9]} \\ \displaystyle \large{y = 2[ {(x - 3)}^{2} - 1]}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%5B%20%20%7B%28x%20-%203%29%7D%5E%7B2%7D%20%20%20%2B%208%20-%209%5D%7D%20%5C%5C%20%20%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%5B%20%20%7B%28x%20-%203%29%7D%5E%7B2%7D%20%20%20-%201%5D%7D)
Then we distribute 2 in.
![\displaystyle \large{y = 2[ {(x - 3)}^{2} - 1]} \\](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%5B%20%20%7B%28x%20-%203%29%7D%5E%7B2%7D%20%20%20-%201%5D%7D%20%5C%5C%20)
![\displaystyle \large{y = 2[ {(x - 3)}^{2} - 1]} \\ \displaystyle \large{y = [2 \times {(x - 3)}^{2} ]+[ 2 \times ( - 1)] } \\ \displaystyle \large{y = 2 {(x - 3)}^{2} - 2 }](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%5B%20%20%7B%28x%20-%203%29%7D%5E%7B2%7D%20%20%20-%201%5D%7D%20%5C%5C%20%5Cdisplaystyle%20%5Clarge%7By%20%3D%20%5B2%20%5Ctimes%20%20%7B%28x%20-%203%29%7D%5E%7B2%7D%20%5D%2B%5B%202%20%5Ctimes%20%28%20-%201%29%5D%20%7D%20%5C%5C%20%5Cdisplaystyle%20%5Clarge%7By%20%3D%202%20%7B%28x%20-%203%29%7D%5E%7B2%7D%20%20-%202%20%7D)
Remember that negative multiply positive = negative.
Hence the vertex form is y = 2(x-3)^2-2 or first choice.
Answer:
1. The tetrahedron has 4 vertices, 6 edges and 4 faces. Then V-E+F=4-6+4=2
2. The cube has 8 vertices, 12 edges and 6 faces. Then V-E+F=8-12+6=2
3. The octahedron has 6 vertices, 12 edges and 8 faces. Then V-E+F=6-12+8=2
4. The icosahedron has 12 vertices, 30 edges and 20 faces. Then V-E+F=12-30+20=2
5. The dodecahedron has 20 vertices, 30 edges and 12 faces. Then V-E+F=20-30+12=2.