Answer:
The options are not shown, so let's derive the relationship.
For an object that is at a height H above the ground, and is not moving, the potential energy will be:
U = m*g*H
where m is the mass of the object, and g is the gravitational acceleration.
Now, the kinetic energy of an object can be written as:
K = (1/2)*m*v^2
where v is the velocity.
Now, when we drop the object, the potential energy begins to transform into kinetic energy, and by the conservation of the energy, by the moment that H is equal to zero (So the potential energy is zero) all the initial potential energy must now be converted into kinetic energy.
Uinitial = Kfinal.
m*g*H = (1/2)*m*v^2
v^2 = 2*g*H
v = √(2*g*H)
So we expressed the final velocity (the velocity at which the object impacts the ground) in terms of the height, H.
Answer:
The ball will fall back and land to Elle's hands.
Explanation:
The bus move in a straight line with constant velocity means that there is no change of direction and no acceleration. Inertia can change the direction of the ball and acceleration can change its velocity. Since these two factors is not present in this scenario, the ball only has vertical movement. Thus the ball will land where it was thrown, in Elle's hands.
Answer:
Diffusing the gradient ensures that most of the molecules in high concentration zone will wind up in the previously low concentration by the spontaneous movement of small molecules.
Explanation:
A gradient of concentration is the difference between in concentration of one place / area substance to different area. Having a molecule flow down its concentration gradient means moving the molecules from hypotonic areas to the concentration hypertonic areas
Diffusing the gradient ensures that most of the molecules in high concentration zone will wind up in the previously low concentration by the spontaneous movement of small molecules.
Answer:
44.64 seconds
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 9.8 m/s²


<u>Time taken to reach 1180 m is 11.29 seconds</u>

<u>Time the rocket will keep going up after the engines shut off is 13.06 seconds.</u>

The distance the rocket will keep going up after the engines shut off is 836.05 m
Total distance traveled by the rocket in the upward direction is 1180+836.05 = 2016.05 m
The rocket will fall from this height

<u>Time taken by the rocket to fall from maximum height is 20.29 seconds</u>
Time the rocket will stay in the air is 11.29+13.06+20.29 = 44.64 seconds
Answer:
The value is 
Explanation:
From the question we are told that
The number of turns is N = 1000
The length is L = 50 cm = 0.50 m
The radius is r = 2.0 cm = 0.02 m
The current is I = 18.0 A
Generally the magnetic field is mathematically represented as

Here
is the permeability of free space with value

So

=> 