This statement is false. Increasing the two objects' mass (I'm guessing) will actually increase their gravitational force. This is because of the equation:

If the distance was increased, then the statement would be true, but since you are increasing mass, which is proportional to the Force of Gravity, you are in fact, increasing the gravitational force between the two objects.
Answer:
the ball didn't not reach the Maximum height because of the time interval
The answer is C. nebular are star nurseries. When the massive gas being collapsing in its own weight. Local areas of gas begin to coalesce under gravity. Due to enormous pressure, nuclear fusion begins and a protostar is formed. The protostar grows into the sun as more hydrogen fuses at the core. The planetesimal materials at the edges of the protostellar discs coalesce to form planets that orbit the star.
Answer:
TE = sqrt(GM/GE)TM
Explanation:
To solve for this problem, you have to use the second kinematic equation and set the height equal to each other. Because the heights are equal, 1/2GETE^2 = 1/2GMTM^2. Rearrange the equation and you'll get the answer
<span>Mass of the ball is m = 0.10kg
Initial speed of the Ball v = 15m/s
a. When the ball is at maximum height the velocity is 0
Momentum of ball = mass x velocity
Momentum = 0.10kg x 0 = 0
b. Getting the maximum height,
Using the conservation of energy equation KEinitial = mgh
1/2mVin^2 = mgh => h = v^2/2g
h = 15^2/2x9.8 = 11.48m => Half Height h = 5.96m
Applying the conservation of energy equation at halfway V^2 = 2gh
V = square root of (2x9.8x5.96) => V = square root of (116.816)
So the velocity at the half way V = 10.81 m/s
Momentum M = m x V => M = 0.10 x 10.81 => M = 1.081kg-m/s</span>