A). The apple has thermal energy, because its temperature is higher
than absolute zero.
It also has chemical energy, because if I eat it, I get a burst of energy
and I become ambitious for a while.
It also has gravitational potential energy, because if I drop it on my foot,
it could bruise one of my piggies.
b). I could increase its potential energy by lifting it higher, like over my head.
c). As long as I'm just holding the apple, it doesn't have any kinetic energy.
I could give it some kinetic energy by throwing it.
Or I could just drop it, and let gravity give it kinetic energy.
The longer you continue to listen, the more beats will be heard.
They'll occur at the rate of (260Hz - 254Hz) = 6 Hz .
Answer:
The work flow required by the compressor = 100.67Kj/kg
Explanation:
The solution to this question is obtained from the energy balance where the initial and final specific internal energies and enthalpies are taken from A-17 table from the given temperatures using interpolation .
The work flow can be determined using the equation:
M1h1 + W = Mh2
U1 + P1alph1 + ◇U + Workflow = U2 + P2alpha2
Workflow = P2alpha2 - P1alpha1
Workflow = (h2 -U2) - (h1 - U1)
Workflow = ( 684.344 - 491.153) - ( 322.483 - 229.964)
Workflow = ( 193.191 - 92.519)Kj/kg
Workflow = 100.672Kj/kg
Answer:
1) True, 2) True, 3) False, 4) False, 5) False
Explanation:
1) True. Dissipative energy cannot be recovered, in general it is a form of heat
2) True. The dissipation can be by radiation, heat
3) False. Mechanical energy is divided into K and U but not in equal parts
4) False. When there are dissipative interactions, part of the mechanical energy is set in the form of heat, so its value decreases
5) False. Mechanical energy is the sum of those two energies
They have the same Number of protons