The answer is Graph C. To explain, this is because as we look at the position vs time graph, we see that after the first second, it was 30 meters from the start. That would mean that it took 1 second to get to 30 meters. That is shown in Graph c
Im pretty sure its A cuz is closer to the earth.
Answer:
(a). The initial velocity is 28.58m/s
(b). The speed when touching the ground is 33.3m/s.
Explanation:
The equations governing the position of the projectile are


where
is the initial velocity.
(a).
When the projectile hits the 50m mark,
; therefore,

solving for
we get:

Thus, the projectile must hit the 50m mark in 1.75s, and this condition demands from equation (1) that

which gives

(b).
The horizontal velocity remains unchanged just before the projectile touches the ground because gravity acts only along the vertical direction; therefore,

the vertical component of the velocity is

which gives a speed
of


Answer:
Explanation:
m = ρV = 1.03( 1000 kg/m³)(π(2² m²)(3.0 m)) = 12360π kg
m ≈ 38,830 kg
Answer:
0.5 m
14.00595
8 m/s, 0.0625 s
5.71314 m/s
Explanation:
k = Spring constant = 128 N/m
A = Amplitude
E = Energy in spring = 16 J
Energy in spring is given by

The amplitude is 0.5 m
Time period is given by

Number of oscillations is given by

The number of oscillations is 14.00595
For maximum speed

The maximum speed is 8 m/s
For a distance of 0.5 m which is the amplitude

The time taken would be 0.0625 s
The maximum kinetic energy is equal to the mechanical energy

At x = 0.35 m

The speed of the block is 5.71314 m/s