Answer:
The magnitude of the electric field between the plates is half its initial value.
Explanation:
We know the electric field E = V/d where V = voltage applied and d = separation between plates.
Since V is constant and V = Ed,
So, E₁d₁ = E₂d₂ where E₁ = initial electric field at separation d₁, d₁ = initial separation of plates, E₂ = final electric field at separation d₂ and d₂ = final separation of plates.
So, E₂ = E₁d₁/d₂
Now, the distance between the plates is twice their original separation. Thus, d₂ = 2d₁
So, E₂ = E₁d₁/2d₁ = E₁/2
So, E₂ = E₁/2
Thus, the magnitude of the electric field between the plates is half its initial value.
The eaths radius is the correct answer, if you need proof look at nasa's website
Answer:
<em>1,378.9ms²</em>
Explanation:
Given the following
Distance S = 70.6m
Time t = 0.32secs
Initial velocity = 0m/s
Required
Acceleration
Using the equation of motion
S = ut+1/2at²
Substitute
70.6 = 0+1/2a(0.32)²
70.6 = 0.0512a
a = 70.6/0.0512
a = 1,378.9
<em>Hence the acceleration is 1,378.9ms²</em>
A graph of real speed can have a section that's as steep as you want,
but it can never be a perfectly vertical section.
Any vertical line on a graph, even it it's only a tiny tiny section, means
that at that moment in time, the speed had many different values.
It also means that the speed took no time to change from one value to
another, and THAT would mean infinite acceleration.