Answer:
If child weight is equal to rope force then child will move with uniform speed
or we can say that the child will remain at rest in his position
Explanation:
As we know that child is hanging by rope
so here there will be two forces on the child
1) Weight or gravitational force which act vertically downwards
2) Tension in the rope which act vertically upwards
Now if child will accelerate upwards then tension force must be more than the weight of the child
If tension force is less than the weight then child will decelerate and his speed will decrease
if tension force is equal to child weight then in that case the child will remain at rest or it will move with same speed
It's hard to tell exactly what's happening in that 110 cm that you marked over the wave. What is under the ends of the long arrow ? How many complete waves ? I counted 4.5 complete waves ... maybe ?
If there are 4.5 complete waves in 110cm, then the length of 1 wave is (110/4.5)=24.44cm.
Frequency = speed/wavelength
Frequency = 2m/s /0.2444m
Frequency = 8.18 Hz
I think all of those are examples
Answer:
1.832 kgm^2
Explanation:
mass of potter's wheel, M = 7 kg
radius of wheel, R = 0.65 m
mass of clay, m = 2.1 kg
distance of clay from centre, r = 0.41 m
Moment of inertia = Moment of inertia of disc + moment f inertia of the clay
I = 1/2 MR^2 + mr^2
I = 0.5 x 7 x 0.65 x 0.65 + 2.1 x 0.41 x 0.41
I = 1.47875 + 0.353
I = 1.832 kgm^2
Thus, the moment of inertia is 1.832 kgm^2.