Answer:
Explanation:
Given
Ship A velocity is 40 mph and is traveling 35 west of north
Therefore in 2 hours it will travel 
thus its position vector after two hours is

similarly B travels with 20 mph and in 2 hours
![=20\times 2=40 miles Its position vector[tex]r_B=40sin80\hat{i}+40cos80\hat{j}](https://tex.z-dn.net/?f=%3D20%5Ctimes%202%3D40%20miles%20%3C%2Fp%3E%3Cp%3EIts%20position%20vector%5Btex%5Dr_B%3D40sin80%5Chat%7Bi%7D%2B40cos80%5Chat%7Bj%7D)
Thus distance between A and B is



Velocity of A

Velocity of B

Velocity of A w.r.t B


Answer:
The
electrons are moving through the superconductor per second.
Explanation:
Given :
Current
A
Charge of electron
C
Time
sec
From the formula of current,
Current is the number of charges flowing per unit time.

Where
number of charges means in our case number of electrons



Therefore,
electrons are moving through the superconductor per second.
Answer:
a)
b)
Explanation:
Given:
mass of bullet, 
compression of the spring, 
force required for the given compression, 
(a)
We know

where:
a= acceleration


we have:
initial velocity,
Using the eq. of motion:

where:
v= final velocity after the separation of spring with the bullet.


(b)
Now, in vertical direction we take the above velocity as the initial velocity "u"
so,

∵At maximum height the final velocity will be zero

Using the equation of motion:

where:
h= height
g= acceleration due to gravity


is the height from the release position of the spring.
So, the height from the latched position be:



Answer:
Explanation:
Given
Height of ceiling is 
Initial speed of Putty 
Speed of Putty just before it strike the ceiling is given by
where v=final velocity
u=initial velocity
a=acceleration
s=displacement



time taken by putty to reach the ceiling




Answer:
Explanation:
All the displacement will be converted into vector, considering east as x axis and north as y axis.
5.3 km north
D = 5.3 j
8.3 km at 50 degree north of east
D₁= 8.3 cos 50 i + 8.3 sin 50 j.
= 5.33 i + 6.36 j
Let D₂ be the displacement which when added to D₁ gives the required displacement D
D₁ + D₂ = D
5.33 i + 6.36 j + D₂ = 5.3 j
D₂ = 5.3 j - 5.33i - 6.36j
= - 5.33i - 1.06 j
magnitude of D₂
D₂²= 5.33² + 1.06²
D₂ = 5.43 km
Angle θ
Tanθ = 1.06 / 5.33
= 0.1988
θ =11.25 ° south of due west.