1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr1967 [171]
3 years ago
14

A 2kg object is tied to the end of a cord and whirled in a horizontal circle of radius 2 m. If the body makes three complete rev

olutions every second,
what is its linear speed?

And what is its centripetal acceleration?
Physics
1 answer:
Travka [436]3 years ago
5 0

Answer:

a) 37.70 m/s

b)710.6 m/s²

Explanation:

Given that ;

Mass of object = 2 kg

Radius of the motion = 2m

Frequency of motion = 3 rev/s

The formula to apply is;

v= 2πrf   where v is linear speed

v = 2×π×2×3 =12π = 37.70 m/s

Centripetal acceleration is given as;

a= 4×π²×r×f²  

a= 4×π²×2×3²

a=710.6 m/s²

You might be interested in
A 0.250 kgkg toy is undergoing SHM on the end of a horizontal spring with force constant 300 N/mN/m. When the toy is 0.0120 mm f
konstantin123 [22]

Answer:

(a) The total energy of the object at any point in its motion is 0.0416 J

(b) The amplitude of the motion is 0.0167 m

(c) The maximum speed attained by the object during its motion is 0.577 m/s

Explanation:

Given;

mass of the toy, m = 0.25 kg

force constant of the spring, k = 300 N/m

displacement of the toy, x = 0.012 m

speed of the toy, v = 0.4 m/s

(a) The total energy of the object at any point in its motion

E = ¹/₂mv² + ¹/₂kx²

E = ¹/₂ (0.25)(0.4)² + ¹/₂ (300)(0.012)²

E = 0.0416 J

(b) the amplitude of the motion

E = ¹/₂KA²

A = \sqrt{\frac{2E}{K} } \\\\A = \sqrt{\frac{2*0.0416}{300} } \\\\A = 0.0167 \ m

(c) the maximum speed attained by the object during its motion

E = \frac{1}{2} mv_{max}^2\\\\v_{max} = \sqrt{\frac{2E}{m} } \\\\v_{max} = \sqrt{\frac{2*0.0416}{0.25} } \\\\v_{max} = 0.577 \ m/s

8 0
3 years ago
Choose the ending that best completes the following sentence: If an object is traveling with a constant velocity… A. There are n
Margarita [4]

I think the answer is B...

3 0
3 years ago
What would happen if you use a thicker wire around the iron nail of an electromagnet? (thats the whole question)
puteri [66]

Answer:

When we have a current I, we will have a magnetic field perpendicular to this current.

Then if we have a wire in a "spring" form. then we will have a magnetic field along the center of this "spring".

Now suppose we put an iron object in the middle (where the magnetic field is) then we will magnetize the iron object.

Of course, the intensity of the magnetic field is proportional to the current, given by:

B = (μ*I)/(2*π*r)

Where:

μ is a constant, I is the current and r is the distance between to the current.

Now remember that for a resistor:

R = ρ*L/A

R is the resistance, ρ is the resistivity, which depends on the material of the wire, L is the length of the wire, and A is the cross-section of the wire.

If we increase the area of the wire (if we use a thicker wire).

And the relation between resistance and current is:

I = V/R

Where V is the voltaje.

Now, if we use a thicker wire, then the cross-section area of the wire increases.

Notice in the resistance equation, that the cross-section area is on the denominator, then if we increase the area A, the resistance decreases.

And the resistance is on the denominator of the current equation, then if we decrease R, the current increases.

If the current increases, the magnetic field increases, which means that we will have a stronger electromagnet.

3 0
3 years ago
Recall that the blocks can only move along the x axis. the x components of their velocities at a certain moment are v1x and v2x.
Contact [7]
The center of mass is given with this formula:
x_c=\frac{\sum_{n=1}^{n=i}m_ix_i}{M}
Velocity is:
v=\frac{dv}{dt}
So, for the velocity of the center of mass we have:
\frac{dx_c}{dt}=\frac{\sum_{n=1}^{n=i}d(m_ix_i)}{Mdt}\\
v_c=\frac{\sum_{n=1}^{n=i}p_i}{M}\\
In our case it is:
v_{xc}=\frac{m_1v_{x1}+m_2v_{x2}}{m_1+m_2}
 
5 0
4 years ago
Calculate the total displacement of a mouse walking along a ruler, if it begins at the x=5cm, and then does the following: It wa
Lana71 [14]
<span>To begin, the mouse walks from 5 to 12 cm, for a displacement of 7 cm. Next, it walks 8 cm in the opposite direction, for a total displacement of (7 + [-8]) or (-1) cm. This leaves the mouse on 4 cm, and then it walks from there to the 7cm location, for a displacement of 7-4 or +3 cm. Adding 3cm to -1cm gives a final displacement of +2cm.</span>
6 0
4 years ago
Other questions:
  • according to many anthropologists a land brigade during the ice age allowing between which two countries
    11·2 answers
  • benzene c6h6 and toluene c6h5ch3 for ideal solutions. at 35c the vapor pressure of benzene is 160 torr and that of toluene is 50
    10·1 answer
  • A constant voltage of 3.00 V has been observed over a certain time interval across a 3.00 H inductor. The current through the in
    11·1 answer
  • calculate the momentum of 5.07 kg egg that is dropped from a roof and falls 2 seconds before hitting the ground.
    5·1 answer
  • What factors would change the force of friction?​
    8·1 answer
  • Now consider a wave which is paired with seven other waves into seven pairs. The two waves in each pairing are identical, except
    10·1 answer
  • If the loop is then converted into a rectangular loop measuring 2.1cm on its shortest side in 6.50ms, and the average emf induce
    15·1 answer
  • Determine the location of the center of mass of a "L" whose thin vertical and horizontal members have the same length L and the
    12·1 answer
  • How can the rate of evaporation of a liquid be increased?​
    13·2 answers
  • The Newton's Cradle toy will slow down and stop because some of the energy is being transformed into s________ energy and also t
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!