1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr1967 [171]
2 years ago
14

A 2kg object is tied to the end of a cord and whirled in a horizontal circle of radius 2 m. If the body makes three complete rev

olutions every second,
what is its linear speed?

And what is its centripetal acceleration?
Physics
1 answer:
Travka [436]2 years ago
5 0

Answer:

a) 37.70 m/s

b)710.6 m/s²

Explanation:

Given that ;

Mass of object = 2 kg

Radius of the motion = 2m

Frequency of motion = 3 rev/s

The formula to apply is;

v= 2πrf   where v is linear speed

v = 2×π×2×3 =12π = 37.70 m/s

Centripetal acceleration is given as;

a= 4×π²×r×f²  

a= 4×π²×2×3²

a=710.6 m/s²

You might be interested in
While the negatively charged rod is near the disk without touching it, a hand briefly touches the end of the post. Then the nega
Paraphin [41]

Answer:

that initially the weather vane was at rest, by this load that remained on the pole it would begin to move.

Explanation:

Let us carefully analyze the situation, when the bar is facing the index post a load of equal magnitude, but opposite sign on its surface, these two charges are in balance; When the hand touches the pole, it creates a path to the ground where the charges that were induced on the pole can be balanced with the charge coming from the ground, leaving a zero charge on the pole.

 

   Now if the hand is removed, there can be no exchange of charges with the earth. When the bar is removed, the induced loads are redistributed in the post, but the excess loads that came from the earth that have the same value and are of a sign opposite to the induced ones remain, you want to sign that they are of the same sign as the charges of the bar.

   In summary, after the process, the post has a load of equal magnitude and sign (negative) that of the bar.

   If we assume that initially the weather vane was at rest, by this load that remained on the pole it would begin to move.

4 0
3 years ago
The density of gasoline is 730 kg/m3 at 0°C. Its average coefficient of volume expansion is 9.60 10-4(°C)−1. Assume 1.00 gal of
kipiarov [429]

Answer: 0.4911 kg

Explanation:

We have the following data:

\rho_{0\°C}= 730 kg/m^{3} is the density of gasoline at 0\°C

\beta=9.60(10)^{-4} \°C^{-1} is the average coefficient of volume expansion

We need to find the extra kilograms of gasoline.

So, firstly we need to transform the volume of gasoline from gallons to m^{3}:

V=8.50 gal \frac{0.00380 m^{3}}{1 gal}=0.0323 m^{3} (1)

Knowing density is given by: \rho=\frac{m}{V}, we can find the mass m_{1} of 8.50 gallons:

m_{1}=\rho_{0\°C}V

m_{1}=(730 kg/m^{3})(0.0323 m^{3})=23.579 kg (2)

Now, we have to calculate the factor f by which the volume of gasoline is increased with the temperature, which is given by:

f=(1+\beta(T_{f}-T_{o})) (3)

Where T_{o}=0\°C is the initial temperature and T_{f}=21.7\°C is the final temperature.

f=(1+9.60(10)^{-4} \°C^{-1}(21.7\°C-0\°C)) (4)

f=1.020832 (5)

With this, we can calculate the density of gasoline at 21.7\°C:

\rho_{21.7\°C}=730 kg/m^{3} f=(730 kg/m^{3})(1.020832)

\rho_{21.7\°C}=745.207 kg/m^{3} (6)

Now we can calculate the mass of gasoline at this temperature:

m_{2}=\rho_{21.7\°C}V (7)

m_{2}=(745.207 kg/m^{3})(0.0323 m^{3}) (8)

m_{2}=24.070 kg (9)

And finally calculate the mass difference \Delta m:

\Delta m=m_{2}-m_{1}=24.070 kg-23.579 kg (10)

\Delta m=0.4911 kg (11) This is the extra mass of gasoline

6 0
3 years ago
A 7750 kg space probe, moving nose-first toward Jupiter at 179 m/s relative to the Sun, fires its rocket engine, ejecting 72.0 k
Reika [66]

Answer:

179.47m/s

Explanation:

Using the law of conservation of momentum

m1u1 + m2u2 = (m1+m2)v

m1 and m2 are the masses

u1 and u2 are the initial velocities

v is the final velocity

Substitute

7750(179)+72(230) = (7750+72)v

1,387,250+16560 = 7822v

1,403,810 = 7822v

v = 1,403,810/7822

v= 179.47m/s

Hence the final velocity of the probe is 179.47m/s

7 0
2 years ago
An ideal spring is hung vertically from the ceiling. The spring constant is k = 125 N/m. A block of mass m = 650 g (1000 g = 1 k
Brrunno [24]

Answer:

0.102 m

Explanation:

k = spring constant of the spring = 125 N/m

m = mass of the block attached to the spring = 650 g = 0.650 kg

x = maximum extension of the spring

h = height dropped by the block = x

Using conservation of energy

Spring potential energy gained = Gravitational potential energy lost

(0.5) k x² = mgh

(0.5) k x² = mgx

(0.5) (125) x = (0.650) (9.8)

x = 0.102 m

3 0
3 years ago
What is the international standard for measurement it is a modified version of the metric system
maxonik [38]

Answer:

SI system i think it is right

6 0
2 years ago
Other questions:
  • A farmer places unhatched chicken eggs under a heat lamp. How does the radiation help the eggs?
    8·2 answers
  • The slope of the graph
    5·1 answer
  • My Notes The linear density rho in a rod 5 m long is 11/ x + 4 kg/m, where x is measured in meters from one end of the rod. Find
    11·2 answers
  • Which core has highest temperature​
    9·1 answer
  • Meeting URL: https://meet.google.com/goq-wpub-frp
    6·2 answers
  • Describe current in terms of charge and electrons.<br><br>PLEASE HELP I WILL GIVE BRAINLIEST​
    12·2 answers
  • the rapid movement of gas molecules can be explained because gasses have size particles and exert attraction for other gas parti
    13·1 answer
  • The half life of a radioactive element is 8 hours. A sample of the element is tested and found to contain 6g of the element. How
    13·1 answer
  • The table below shows the average wind speeds of four hurricanes in Florida
    5·2 answers
  • What two things does gravitational force depend upon?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!