Answer:
B. parents
Explanation:
one of the conclusions from Einsteins relativity theory for his equation E=
(where E is energy, m is mass and C is the speed of light),
is that time moves relative to the observer. Time moves more slowly when the observer is in motion (time dilation), therefore an individual in motion ages more slowly than someone at rest. This in fact happened when astronaut Scot Kelly spent nearly a year on board the international space station and on his return, his twin brother had aged slightly faster than him. In conclusion, if a space trip finds a son or daughter is biologically older than his or her parents, the space trip was taken by the parents.
The period of the oscillations.T = 1.2042s
Opposition is the process of any quantity or measure fluctuating repeatedly about its equilibrium value throughout time. This process is referred to as oscillation. Oscillation, a periodic fluctuation of a substance, can also be described as alternating between two values or rotating around a central value.
Typically, the mathematical formula for the moment of inertia is
T = 2 π √(I / mgd)
Therefore, a moment of inertia
I = 9.00×10-3 + md^2 ;
I=9.00*10^{-3}+ 0.5 * 0.3^2
I=0.054
T=2
T=1.2042s
The period of the oscillations.T = 1.2042s
Read more about the period of the oscillations. brainly.com/question/14394641
#SPJ1
The piece of paper has less mass and will glide down the window, whereas the textbook will go straight to the ground. Since the textbook has more mass and less ways of it being able to 'glide' the textbook will hit the ground first.
Answer: The net force acting on the car 1,299.3 N.
Explanation:
Mass of the car = 710 kg
Initial velocity of the car of the ,u= 37 km/h= 10.27 m/s 
Final velocity of the car,v = 120 km/h = 33.33 m/s
time taken b y car = 12.6 sec
v-u=at





The net force acting on the car 1,299.3 N.
Newtons third law (inertia) is to blame