Mutation. Called this because the other possible answers do not equal a copying error, mutations affect the outcome.
39.96 g product form when 16.7 g of calcium metal completely reacts.
<h3>What is the stoichiometric process?</h3>
Stoichiometry is a section of chemistry that involves using relationships between reactants and/or products in a chemical reaction to determine desired quantitative data.
Equation:
→ 
In this case, for the undergoing reaction, we can compute the grams of the formed calcium chloride by noticing the 1:1 molar ratio between calcium and it (stoichiometric coefficients) and using their molar mass of 40 g/mol and 111 g/mol by using the following stoichiometric process:
= 16.7 g Ca x
x
x 
= 39.96 g
Hence, 39.96 g product form when 16.7 g of calcium metal completely reacts.
Learn more about the stoichiometric process here:
brainly.com/question/15047541
#SPJ1
Answer:
Ion think you have enough coins or make a account!
Explanation:
Answer:
16.46 g.
Explanation:
- It is a stichiometry problem.
- We should write the balance equation of the mentioned chemical reaction:
<em>2Cu + Zn(NO₃)₂ → Zn + 2Cu(NO₃).</em>
- It is clear that 2.0 moles of Cu reacts with 1.0 mole of Zn(NO₃)₂ to produce 1.0 mole of Zn and 2.0 moles of Cu(NO₃).
- We need to calculate the number of moles of the reacted Cu (32.0 g) using the relation:
<em>n = mass / molar mass</em>
- The no. of moles of Cu = mass / atomic mass = (32.0 g) / (63.546 g/mol) = 0.503 mol.
<u><em>Using cross multiplication:</em></u>
2.0 moles of Cu produces → 1.0 mole of Zn, from the stichiometry.
0.503 mole of Cu produces → ??? mole of Zn.
- The no. of moles of Zn produced = (1.0 mol)(0.503 mol) / (2.0 mol) = 0.2517 mol.
∴ The grams of Zn produced = no. of moles x atomic mass of Zn = (0.2517 mol)(65.38 g/mol) = 16.46 g.