Answer:- 1.90 atm
Solution:- It is based on combined gas law equation, PV = nRT
In this equation, P is pressure, V is volume, n is moles of gas, R is universal gas constant and T is kelvin temperature.
If we divide both sides by V then:

We know that, molarity is moles per liter. So, in the above equation we could replace
by molarity, M of the gas. The equation becomes:
P = MRT
T = 20 + 273 = 293 K
M = 
Let's plug in the values in the equation:
P = 
P = 1.90 atm
So, the pressure of the gas is 1.90 atm.
Answer:
V ∝ abc
Explanation:
This task is a joint variation task involving only direct proportionality:
Direct variation is one in which two variables are in direct proportionality to each other. This means that as one increases, the other variable also increases and vice - versa.
Joint variation is one in which one variable is dependent on two or more variables and varies directly as each of them.
In this exercise:
If a ∝ b and a ∝ c, then a ∝ bc
Taking the above three proportionalities,
V ∝ a ∝ b ∝ c
V ∝ a ∝ bc
V ∝ abc
I believe the correct answer would be the last option. All of the quantities given above contain the same number of particles. We determine this by using the avogadro's number. It represents the number of units in one mole of any substance. This has the value of 6.022 x 10^23 units / mole.
2 moles of carbon atoms ( 6.022 x 10^23 particles / mole ) = 1.20 x10^24 particles
<span>
2 moles of carbon dioxide molecules </span>( 6.022 x 10^23 particles / mole ) = 1.20 x10^24 particles<span>
2 moles of diatomic oxygen molecules </span>( 6.022 x 10^23 particles / mole ) = 1.20 x10^24 particles
As you can see, no matter what is the gas as long as they have the same number of moles, they would also have same number of particles<span />