Answer:
a)
b)
Explanation:
Given:
mass of bullet, 
compression of the spring, 
force required for the given compression, 
(a)
We know

where:
a= acceleration


we have:
initial velocity,
Using the eq. of motion:

where:
v= final velocity after the separation of spring with the bullet.


(b)
Now, in vertical direction we take the above velocity as the initial velocity "u"
so,

∵At maximum height the final velocity will be zero

Using the equation of motion:

where:
h= height
g= acceleration due to gravity


is the height from the release position of the spring.
So, the height from the latched position be:



Answer
given,
Speed of car A = 95 Km/h
= 95 x 0.278 = 26.41 m/s
Speed of Car B = 121 Km/h
= 121 x 0.278 = 33.64 m/s
Distance between Car A and B at t=0 = 41 Km
a) Distance travel by car B
d = 26.41 t + 41000
speed of the car A = 33.64 m/s
distance = s x t
26.41 t + 41000 = 33.64 x t
7.23 t = 41000
t = 5670.82 s
time taken by Car B to cross Car A is equal to t = 5670.82 s
distance traveled by car A
D = s x t = 26.41 x 5670.82 = 149766.25 m = 149.76 Km
b) distance travel by the car B in 30 s after overtaking car A
D' = s x t = 33.64 x 30 = 1009.2 m = 1 Km
Answer: Symbol is I and unit A
Explanation: A represents Amperes
HOPE THIS HELPS!!!!!!!!
travel through a vacuum at the speed of light. Other waves need a medium; sound waves need molecules that vibrate.
The ration of the rms speed of 235uf6 to that of 238uf6 is 1.004.
The molecular mass of 235uf6 is 349, while that of 238uf6 is 352.
The rms speed is calculated as
v=√(3RT/m)
Thus the ratio rms speed of 235uf6 to 238uf6 is calculated as
r=√(352/349)=1.004