Explanation:
The quantity of charge Q in coulombs (C) that has passed through a point in a wire up to time t (measured in seconds) is given by :
We need to find the current flowing. We know that the rate of change of electric charge is called electric current. It is given by :
At t = 1 s,
Current,
So, the current at t = 1 s is 3 A.
For lowest current,
Hence, this is the required solution.
The alpha particle is emitted at 4235 m/s
Explanation:
We can use the law of conservation of momentum to solve the problem: the total momentum of the original nucleus must be equal to the total momentum after the alpha particle has been emitted. Therefore:
where:
is the mass of the original nucleus
is the initial velocity of the nucleus
is the mass of the alpha particle
is the final velocity of the alpha particle
is the mass of the daughter nucleus
is the final velocity of the nucleus
Solving for , we find the final velocity of the alpha particle:
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
128.1-127.8= 0.3Hz
<span>129.1-128.1= 1.0Hz </span>
<span>129.1-127.8= 1.3Hz</span>
There are missing data in the text of the problem (found them on internet):
- speed of the car at the top of the hill:
- radius of the hill:
Solution:
(a) The car is moving by circular motion. There are two forces acting on the car: the weight of the car
(downwards) and the normal force N exerted by the road (upwards). The resultant of these two forces is equal to the centripetal force,
, so we can write:
(1)
By rearranging the equation and substituting the numbers, we find N:
(b) The problem is exactly identical to step (a), but this time we have to use the mass of the driver instead of the mass of the car. Therefore, we find:
(c) To find the car speed at which the normal force is zero, we can just require N=0 in eq.(1). and the equation becomes:
from which we find