Okay. There is a simple formula to go with this where:
p = mv
P: Momentum.
M: Mass.
V: Velocity
Sub the numbers in and solve for M.
10.0 = m(1.5)
10.0/1.5 = m
6.67 kg = m
Therefore the mass of the ball is 6.67kg.
Answer:


Explanation:
Given:
- flow rate of water,

<em>∵Density of water is 1 kg per liter</em>
∴mass flow rate of water, 
- height of pumping,

- efficiency of motor drive,

- diameter of pipe,

<u>Now the power required for pumping the water at given conditions:</u>



<u>Hence the electric power required:</u>



<u>Flow velocity is given as:</u>

where: a = cross sectional area of flow through the pipe


The wire needs to be sauderwired to be connected back into place to get energy into column so it came function properly again!
Velocity as a Vector Quantity
Because the person always returns to the original position, the motion would never result in a change in position. Since velocity is defined as the rate at which the position changes, this motion results in zero velocity.