1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
4vir4ik [10]
3 years ago
7

Please need help with this

Physics
2 answers:
lutik1710 [3]3 years ago
8 0

The first and third choices could both do it, but the first choice makes a much better, clear demonstration.

IgorLugansk [536]3 years ago
4 0

The answer is option A

A current can be passed through the coil with the help of the battery and the presence of magnetic field can be shown by compass.

You might be interested in
How do scientists use the doppler effect to understand the universe?
Nadusha1986 [10]

For the First answer, It would be "A"

The for the next one the answer is "C"

I hope this helps. :)

6 0
2 years ago
Read 2 more answers
Neither _____ nor _____ can be created or destroyed, but they can be changed from one to the other
Viktor [21]

Matter nor energy

hope this helps

3 0
3 years ago
Read 2 more answers
A car and a train move together along straight, parallel paths with the same constant cruising speed v(initial). At t=0 the car
kogti [31]

Answer:

t_1 = \frac{v_i}{a_i}

t_2 = \frac{v_i}{a_i}

Δd = v_it_1 = v_i^2/a_i

Explanation:

As v(t) = v_i + at, when the car is making full stop, v(t_1) = 0 . a = -a_i . Therefore,

0 = v_i - a_it_1\\v_i = a_it_1\\t_1 = \frac{v_i}{a_i}

Apply the same formula above, with v(t_2) = v_i and a = a_i, and the car is starting from 0 speed,  we have

v_i = 0 + a_it_2\\t_2 = \frac{v_i}{a_i}

As s(t) = vt + \frac{at^2}{2}. After t = t_1 + t_2, the car would have traveled a distance of

s(t) = s(t_1) + s(t_2)\\s(t_1) = (v_it_1 - \frac{a_it_1^2}{2})\\ s(t_2) = \frac{a_it_2^2}{2}

Hence s(t) = (v_it_1 - \frac{a_it_1^2}{2}) + \frac{a_it_2^2}{2}

As t_1 = t_2 we can simplify s(t) = v_it_1

After t time, the train would have traveled a distance of s(t) = v_i(t_1 + t_2) = 2v_it_1

Therefore, Δd would be 2v_it_1 - v_it_1 = v_it_1 = v_i^2/a_i

8 0
3 years ago
Calculate the electric field at one corner of a square 50 cm on a side if the other corners are occupied by 250x10-7C (charges)
SIZIF [17.4K]

The electric field at one corner of a square is 1614217 N/C.

Explanation:

The distance between x and y direction diagonals.

As per the given details the distance between diagonals is calculated as

0.5² + 0.5² = c²  =>  c = 0.707 m

Charge to the right:  In x direction

In order to find the electric charge towards x direction

we use e = kq/r² formula

As 'k' is coulomb's constant it's value is 9 x 10^{9} N m²/C²

e = (9 x 10^{9})(250 x 10^{-7}) / (0.5)²

e = 9 x 10^{5} N/C

Charge diagonal:

e = kq/r²

e = [(9 x 10^{9})(250 x 10^{-7}) / (0.707)²] cos 45

e = 225000√2 N/C

X direction sum = 1218198 N/C.

Similarly as shown in x direction the charge is same for y direction also

Charge below:  For y direction

e = kq/r²

e = (9 x 10^{9})(250 x 10^{-7}) / (0.5)²

e = 9 x 10^{5} N/C

Charge diagonal:

e = kq/r²

e = [(9 x 10^{9})(250 x 10^{-7}) / (0.5)²] sin 45

e = 159099 N/C

Y direction sum = 1059099 N/C

Resultant electric field strength:

1218198 ² + 1059099² = e²

e = 1614217 N/C [45 degrees below the horizontal]

4 0
3 years ago
An electron with charge −e and mass m moves in a circular orbit of radius r around a nucleus of charge Ze, where Z is the atomic
shepuryov [24]

Answer:

v=\sqrt{\frac{kZe^2}{mr}}

Explanation:

The electrostatic attraction between the nucleus and the electron is given by:

F=k\frac{(e)(Ze)}{r^2}=k\frac{Ze^2}{r^2} (1)

where

k is the Coulomb's constant

Ze is the charge of the nucleus

e is the charge of the electron

r is the distance between the electron and the nucleus

This electrostatic attraction provides the centripetal force that keeps the electron in circular motion, which is given by:

F=m\frac{v^2}{r} (2)

where

m is the mass of the electron

v is the speed of the electron

Combining the two equations (1) and (2), we find

k\frac{Ze^2}{r^2}=m\frac{v^2}{r}

And solving for v, we find an expression for the speed of the electron:

v=\sqrt{\frac{kZe^2}{mr}}

6 0
2 years ago
Other questions:
  • 12.51 A parallel RLC circuit, which is driven by a variable frequency 2-A current source, has the following values: R = 1 kΩ, L
    6·1 answer
  • How do you make a Lewis Electron Dot Structure?
    11·1 answer
  • You can increase your flexiablity by streaching your bones / muscles
    13·1 answer
  • An object is dropped from rest and falls freely 20 m to Earth. When is the speed of the object 9.8 m/s?
    6·1 answer
  • Some lakes, such as the Great Salt Lake, accumulate soluble minerals such as salt. In those lakes, people find it much easier to
    8·2 answers
  • Light refracts due to a change in ________
    13·1 answer
  • A boy throws a baseball onto a roof and it rolls back down and off the roof with a speed of 3.80 m/s. If the roof is pitched at
    11·1 answer
  • Copper wire of diameter 0.289 cm is used to connect a set of appliances at 120 V, which draw 1850 W of power total. The resistiv
    5·1 answer
  • 2. A man in a hot air balloon drops his “five guy's hamburger” over the edge of the basket. The
    14·1 answer
  • A container of an ideal gas at 1 atm is compressed to 1/3 its volume, with the temperature held constant, what is its final pres
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!