Answer:
The atomic number of Selenium is 34. This means that Selenium possesses 34 electrons.
The atomic number of Aluminium is 13. This means that Aluminium has 13 electrons.
Hence, there is a difference of 21 between the number of electrons in an atom of selenium and the number of electrons in an atom of aluminium.
Selenium has 6 electrons in it's outer most shell whereas aluminium has 3 electrons in its outer most shell. As a result, aluminium will have a greater tendency to lose one of its outer most electrons to become stable.
Answer:
Ka = 6.02x10⁻⁶
Explanation:
The equilibrium that takes place is:
We <u>calculate [H⁺] from the pH</u>:
- [H⁺] =

Keep in mind that [H⁺]=[A⁻].
As for [HA], we know the acid is 0.66% dissociated, in other words:
We <u>calculate [HA]</u>:
Finally we <u>calculate the Ka</u>:
- Ka =
= 6.02x10⁻⁶
Answer:
See figure 1
Explanation:
If we want to find the acid and the Brønsted-Lowry base, we must remember the definition for each of these molecules:
-) Acid: hydrogen donor
-) Base: hydrogen acceptor
In the <u>caffeine structure,</u> we have several atoms of nitrogen. These nitrogen atoms have the ability to <u>accept</u> hydronium ions (
). Therefore the caffeine molecule will be the base since it can accept
If caffeine is the base, the water must be the acid. So, the water in this reaction donated a hydronium ion.
<u>Thus, caffeine is the base and water the acid. (See figure 1)</u>
Entropy is also defined as a measure of the average kinetic energy of particles in a sample of matter.