We cannot solve this problem without using empirical data. These reactions have already been experimented by scientists. The standard Gibb's free energy, ΔG°, (occurring in standard temperature of 298 Kelvin) are already reported in various literature. These are the known ΔG° for the appropriate reactions.
<span>glucose-1-phosphate⟶glucose-6-phosphate ΔG∘=−7.28 kJ/mol
fructose-6-phosphate⟶glucose-6-phosphate ΔG∘=−1.67 kJ/mol
</span>
Therefore, the reaction is a two-step process wherein glucose-6-phosphate is the intermediate product.
glucose-1-phosphate⟶glucose-6-phosphate⟶fructose-6-phosphate
In this case, you simply add the ΔG°. However, since we need the reverse of the second reaction to end up with the terminal product, fructose-6-phosphate, you'll have to take the opposite sign of ΔG°.
ΔG°,total = −7.28 kJ/mol + 1.67 kJ/mol = -5.61 kJ/mol
Then, the equation to relate ΔG° to the equilibrium constant K is
ΔG° = -RTlnK, where R is the gas constant equal to 0.008317 kJ/mol-K.
-5.61 kJ./mol = -(0.008317 kJ/mol-K)(298 K)(lnK)
lnK = 2.2635
K = e^2.2635
K = 9.62
I’m pretty sure it’s B since ones charge the neutral while ones is positive, it’s an obvious difference as well/
The correct answer is + 32.5 J because heat is absorbed here by copper not evolved also after calculation we will find the H value is positive, lets calculate it:
H = m C Δt where:
m = 10 g
C = 0.13 J/g.°C
Δ t = final temperature - initial temperature = 50 - 25 = + 25 °C
so H = 10 x 0.13 x (+25) = + 32.5 J