Answer:
1.008moles of iodine
Explanation:
Hello,
This question requires us to calculate the theoretical yield of I₂ or number of moles that reacted.
Percent yield = (actual yield / estimated yield) × 100
Actual yield = 1.2moles
Estimated yield = ?
Percentage yield = 84%
84 / 100 = 1.2 / x
Cross multiply and solve for x
100x = 84 × 1.2
100x = 100.8
x = 100.8/100
x = 1.008moles
1.008 moles of I₂ reacted in excess of H₂ to give 1.2 moles of HI
If P=M*V than P=30kg*5m/s. P=150.
P=momentum
M=mass
V=Velocity
Now the last time i have done physics was last year. but i'm pretty confident in this answer. Hope this helps!
2200 mg of antibiotic
Explanation:
Given that 40 mg of antibiotic/kg of the bodyweight is given.
If patient is 55 kg then the dose of antibiotic will be
if 40/1000000 is done then we can get antibiotic in kg/kg of the weight
= 0.00004 kg of antibiotic per kg
0.00004*55 ( to know how much 55 kg person will require)
= 0.0022 kg
This 0.0022 value will be converted to mg
0.0022*10^6
= 2200 mg of antibiotic will be given to a 55kg patient.
Answer:
1.346 v
Explanation:
1) Fist of all we need to calculate the standard cell potential, one should look up the reduction potentials for the species envolved:
(oxidation)
→
E°=0.337 v
(reduction)
→
E°=1.679 v
(overall)
+8H^{+}_{(aq)}→
E°=1.342 v
2) Nernst Equation
Knowing the standard potential, one calculates the nonstandard potential using the Nernst Equation:
Where 'R' is the molar gas constant, 'T' is the kelvin temperature, 'n' is the number of electrons involved in the reaction and 'F' is the faraday constant.
The problem gives the [red]=0.66M and [ox]=1.69M, just apply to the Nernst Equation to give
E=1.346