<span><span>Convert the percentages into decimals (you can do that by dividing the percent by 100), then multiply that by its
corresponding mass to find its relative amount/ contribution to the
atomic mass of chromium. After doing so, add all of the obtained values
together to get the average mass.
</span>
83.79% = .08379
9.50% = .095
4.35% = .0435
2.36% = .0236
Average mass of chromium = 0.8379(51.94) + 0.095( 52.94) + 0.0435(49.95) + 0.0236(53.94)
Answer: 52amu
P.S. never forget units
</span>
Answer:
350 g dye
0.705 mol
2.9 × 10⁴ L
Explanation:
The lethal dose 50 (LD50) for the dye is 5000 mg dye/ 1 kg body weight. The amount of dye that would be needed to reach the LD50 of a 70 kg person is:
70 kg body weight × (5000 mg dye/ 1 kg body weight) = 3.5 × 10⁵ mg dye = 350 g dye
The molar mass of the dye is 496.42 g/mol. The moles represented by 350 g are:
350 g × (1 mol / 496.42 g) = 0.705 mol
The concentration of Red #40 dye in a sports drink is around 12 mg/L. The volume of drink required to achieve this mass of the dye is:
3.5 × 10⁵ mg × (1 L / 12 mg) = 2.9 × 10⁴ L
1 Gallon = 3.7854118 Liters
<u>Answer</u>:
A solid will melt at the temperature at which the kinetic energy breaks the
inter-molecular attractions.
<u>Explanation</u>:
The melting point is the state at which "a substance changes its temperature from a solid to liquid". At the melting point temperature, there is an equilibrium between the both the solid and the liquid phase. When the solid particle is heated by increasing the temperature the particle in the solid vibrate quickly and it absorbs kinetic energy.
It leads to the breaking of the organisation of particle in between the solid and that leads to the melting of solid. Thus, at the melting point, the kinetic energy breaks the inter-molecular attractions.