Answer:
- <em><u>Mendeleev produced the first orderly arrangement of known elements.</u></em>
- <em><u>Mendeleev used patterns to predict undiscovered elements.</u></em>
Explanation:
- <u>Mendeleev produced the first orderly arrangement of known elements and used patterns to predict the undiscovered elements.</u>
Those two statments are true.
For the time being there were some 62 known elements. Before Medeleev some schemes to order part of the elements were proposed, but Medeleev showed the relationship between the atomic mass and the properties of the elements (supports second choice). This arrangement is known as the periodic table.
More importantly, Mendeleev predicted correctly the existance and properties of unknown elements, which is his major contribution: he left blanket spaces which where gradually filled when new elements where discovered (this supports the fourth choice).
The first modern chemistry book was written by Antoine Lavoisier (this discards first option).
Mendeleev ordered the elements by increasing mass number (this discards third choice), which was corrected later by the scientist Henry Moseley, who ordered the elements by increasing atomic number (number of protons).
Isotopes were not known by Mendeleev times, so this discards the last option.
The end product will depend upon
a) the amount of the reagent taken
b) the final treatment of the reaction
If we have just taken methylmagnesium iodide and p-hydroxyacetophenone, then we will get methane and hydroxyl group substituted with MgI in place of hydrogen
Figure 1
However if we have taken excess of methylmagnesium iodide which is Grignard's reagent followed by hydrolysis we will get different product
Figure 2
Answer:
D) the carbon with the low-energy phosphate on it in 1,3 BPG is labeled.
Explanation:
Glycolysis has 2 phase (1) preparatory phase (2) pay-off phase.
<u>(1) Preparatory phase</u>
During preparatory phase glucose is converted into fructose-1,6-bisphosphate. Till this time the carbon numbering remains the same i.e. if we will label carbon at 6th position of glucose, its position will remian the same in fructose-1,6-bisphosphate that means the labeled carbon will still remain at 6th position.
When fructose-1,6-bisphosphate is further catalyzed with the help of enzyme aldolase it is cleaved into two 3 carbon intermediates which are glyceraldehyde 3-phosphate (GAP) and dihyroxyacetone phosphate (DHAP). In this conversion, the first three carbons of fructose-1,6-bisphosphate become carbons of DHAP while the last three carbons of fructose-1,6-bisphosphate will become carbons of GAP. It simply means that GAP will acquire the last carbon of fructose-1,6-bisphosphate which is labeled. Now the last carbon of GAP which has phosphate will be labeled.
<u>(2) Pay-off phase</u>
During this phase, GAP is dehydrogenated into 1,3-bisphosphoglycerate (BPG) with the help of enzyme glyceraldehyde 3-phosphate dehydrogenase. This oxidation is coupled to phosphorylation of C1 of GAP and this is the reason why 1,3-bisphosphoglycerate has phosphates at 2 positions i.e. at position 1 in which phosphate is newly added and position 3rd which already had labeled carbon.
It is pertinent to mention here that<u> BPG has a mixed anhydride and the bond at C1 is a very high energy bond.</u> In the next step, this high energy bond is hydrolyzed into a carboxylic acid with the help of enzyme phosphoglycerate kinase and the final product is 3-phosphoglycerate. Hence, the carbon with low energy phosphate i.e. the carbon at 3rd position remains labeled.
Answer:
A chemical reaction.
Explanation:
A change in temperature is evidence of a chemical reaction.
Also: They are chemicals...