Using the law of conservation of angular momentum, we have
<span>I1 w1 = I2 w2 </span>
<span>ie., m1r^2/2 x w1 = ( m1r^2/2 + m2r^2 ) w2 </span>
<span>ie., new angular velocity w2 = m1 w1 / ( m1+ 2m2) = 125 x 3.1 / ( 125 + 2 x39.5 ) </span>
<span>= 1.8995 = 1.9 rad /sec ( nearly )</span>
Distance=average velocity x time =((12+8)/2) x 3 =30m
Answer:
6957.04N
Explanation:
Using
vf2=vi2+2ad
But vf = 0 .
So convert 50km/hr to m/s, and you need to convert 61 cmto m
(50km/hr)*(1hr/3600s)*(1000m/km) = 13.9m/s
61cm * (1m/100cm) = .61m
So n
0 = (13.9m/s)^2 + 2a(.61m)
a = 158.11m/s^2
So
using F = ma
F = 44kg(158.11m/s^2) = 6957.04N
Answer
given,
wavelength = λ = 18.7 cm
= 0.187 m
amplitude , A = 2.34 cm
v = 0.38 m/s
A) angular frequency = ?
angular frequency ,
ω = 2π f
ω = 2π x 2.03
ω = 12.75 rad/s
B) the wave number ,
C)
as the wave is propagating in -x direction, the sign is positive between x and t
y ( x ,t) = A sin(k x - ω t)
y ( x ,t) = 2.34 x sin(33.59 x - 12.75 t)